Probing lifetimes of short-lived nuclear resonances of astrophysical interest

L. J. Sun for the DSL and PXCT Collaborations

Classical novae and Type I X-ray bursts (XRBs) are among the most frequent thermonuclear stellar explosions in the Galaxy. The ${}^{30}P(p,\gamma){}^{31}S$ reaction acts as a nucleosynthesis bottleneck in the flow of material to heavier masses, affecting several nova observables. The dominant source of uncertainty in the current recommended reaction rate is the γ decay width of the $3/2^+$, 260-keV resonance in ${}^{31}S$. We have observed evidence for γ rays originating from the resonance using the Doppler Shift Lifetimes (DSL) facility at TRIUMF, which was designed for lifetime measurements in the $10^{-15} - 10^{-12}$ s range [1]. We have upgraded DSL to DSL2, increasing the detection efficiency by an order of magnitude. DSL2 has been successfully commissioned during the first run of the lifetime measurement of the key ${}^{22}Na(p,\gamma){}^{23}Mg$ resonance in novae [2]. The data analysis is currently in progress, and a second run has been scheduled for October 2024. Our proposal to measure the lifetime of the key ${}^{31}S$ resonance using DSL2 has also been approved, aiming to put the ${}^{30}P(p,\gamma){}^{31}S$ reaction rate on a fully experimental footing and to reduce the nuclear uncertainties in simulations of nova observables.

Under XRB conditions, the competition between the ⁵⁹Cu(p, γ)⁶⁰Zn and ⁵⁹Cu(p, α)⁵⁶Ni reactions determines the strength of the NiCu cycle, which is predicted to have significant impacts on the modeling of X-ray burst light curves and the composition of the burst ashes. However, the experimental information on ⁶⁰Zn resonances is scarce. We have designed and built a detection system that utilizes and extends the Particle X-ray Coincidence Technique (PXCT), originally developed to measure the average lifetimes in the $10^{-17} - 10^{-15}$ s range for proton-unbound states populated by electron capture (EC). Our setup is able to measure the lifetimes and decay branching ratios of discrete ⁶⁰Zn resonances populated by ⁶⁰Ga EC/ β^+ decay, as well as to address captures on excited states. The performance of the PXCT system has been thoroughly tested and is ready for the ⁶⁰Ga decay experiment in the stopped-beam area of FRIB.

This work is supported by the U.S. National Science Foundation under Grant Nos. PHY-1102511, PHY-1565546, PHY-1913554, PHY-2110365, and PHY-2209429, the U.S. Department of Energy under Award Nos. DE-SC0016052 and DE-SC0024587, the Natural Sciences and Engineering Research Council of Canada, and the National Research Council of Canada.

References

- [1] L. J. Sun, C. Fry, B. Davids *et al.*, Phys. Lett. B **839**, 137801 (2023).
- [2] B. Davids, C. Wrede *et al.*, TRIUMF EEC S2193.
- [3] L. J. Sun, J. Dopfer, A. Adams *et al.*, In preparation.

L. J. Sun¹, C. Wrede^{1,2}, B. Davids^{3,4}, A. Adams^{1,2}, A. Banerjee⁵, M. Bowry³,

B. A. Brown^{1,2}, T. Budner⁶, R. Caballero-Folch³, M.Y.H. Chan⁷, J. Chen¹, J. Dopfer^{1,2},

N. Esker⁸, L. Evitts³, M. Friedman⁹, C. Fry¹⁰, A.B. Garnsworthy³, G. Hackman³,

J. Henderson³, K. Hudson⁴, J. José¹¹, V. Karayonchev³, O.S. Kirsebom¹², L. Le⁸,

P. Machule³, R. Mahajan¹³, J. Measures³, M. Moukaddam³, M. Oliver⁸, J. Park^{3,14},

C. Pearson³, D. Pérez-Loureiro¹⁵, T. Rauscher^{16,17}, C. Ruiz³, R. Russell¹⁸,

P. Ruotsalainen³, J. Smallcombe³, J. K. Smith³, D. Southall³, J. Surbrook¹⁰, Ö. Sürer¹⁹,

C. Sumithrarachchi¹, L. E. Weghorn^{1,2}, M. Williams^{3,20}, D. Weisshaar¹, T. Wheeler^{1,2},

J. Wilkinson²¹, V. Vedia³, L. Wagner³, D. Yates²²

¹Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, United States

²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States

³TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

⁴Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

⁵Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India

⁶Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

⁷Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208, USA

⁸Department of Chemistry, San José State University, San Jose, California 95192, USA

⁹Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

¹⁰Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

¹¹Departament de Física, Universitat Politècnica de Catalunya, E-08019 Barcelona, Spain

¹²Institute for Big Data Analytics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

¹³Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803,

USA

¹⁴Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon 34126, Republic of Korea ¹⁵Canadian Nuclear Laboratories, Chalk River, Ontario K0J 1J0, Canada

¹⁶Department of Physics, University of Basel, 4056 Basel, Switzerland

¹⁷Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom

¹⁸Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

¹⁹Department of Information Systems and Analytics, Miami University, Oxford, Ohio 45056, USA

²⁰Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

²¹Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

²²Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada