User Tools

Site Tools


the_nu_wgv

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
the_nu_wgv [2014/06/09 16:53]
gastis created
the_nu_wgv [2014/06/18 19:08]
willcox
Line 1: Line 1:
-* [[Don Willcox]] + ​Members:  ​Don WillcoxNicole Vassh, Panos Gastis 
-* [[Nicole Vassh]] + 
-* [[Panos Gastis]]+ 
 +===== Decoupling Temperature Calculation ===== 
 + 
 + 
 +We would like to find the decoupling temperature,​ such that: 
 +$$\Gamma= G_F^2T^5 + \mu_\nu^2T^3 \sim H = \frac{T^2}{M_{pl}} $$ 
 + 
 +Let's replace with some more illustrative constants:​ 
 +$$\Gamma = \frac{T^5}{M_W^4} + g_\nu^2\frac{T^3}{m_p^2} \sim H = \frac{T^2}{M_{pl}} $$ 
 + 
 +For $g_\nu\equiv 0$, we have: 
 +$$ T_0^3 = \frac{M_W^4}{M_{pl}} $$ 
 + 
 +We can use this to rewrite the cubic equation, in dimensionless form: 
 +$$\left(\frac{T}{T_0}\right)^3 = 1 - g_\nu^2 \frac{M_{pl}^{2/​3}M_W^{4/​3}}{m_p^2}\frac{T}{T_0}$$ 
 +  
 +We can see that the last term is of order unity when $g_\nu\sim \frac{m_p}{M_{pl}^{1/​3}M_W^{2/​3}}\sim 10^{-8}$, allowing us to rewrite the equation as: 
 +$$\left(\frac{T}{T_0}\right)^3 = 1 - \left(\frac{g_\nu}{10^{-8}}\right)^2 \frac{T}{T_0}$$ 
 + 
 + 
 +===== Link to Git Repository: ===== 
 + 
 +  * [[https://​github.com/​dwillcox/​bbn-numu]]
the_nu_wgv.txt · Last modified: 2014/07/01 14:24 by vassh