User Tools

Site Tools


the_nu_wgv

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
the_nu_wgv [2014/06/09 16:56]
gastis created
the_nu_wgv [2014/06/18 19:08]
willcox
Line 1: Line 1:
  ​Members: ​ Don Willcox, Nicole Vassh, Panos Gastis  ​Members: ​ Don Willcox, Nicole Vassh, Panos Gastis
 +
 +
 +===== Decoupling Temperature Calculation =====
 +
 +
 +We would like to find the decoupling temperature,​ such that:
 +$$\Gamma= G_F^2T^5 + \mu_\nu^2T^3 \sim H = \frac{T^2}{M_{pl}} $$
 +
 +Let's replace with some more illustrative constants:
 +$$\Gamma = \frac{T^5}{M_W^4} + g_\nu^2\frac{T^3}{m_p^2} \sim H = \frac{T^2}{M_{pl}} $$
 +
 +For $g_\nu\equiv 0$, we have:
 +$$ T_0^3 = \frac{M_W^4}{M_{pl}} $$
 +
 +We can use this to rewrite the cubic equation, in dimensionless form:
 +$$\left(\frac{T}{T_0}\right)^3 = 1 - g_\nu^2 \frac{M_{pl}^{2/​3}M_W^{4/​3}}{m_p^2}\frac{T}{T_0}$$
 + 
 +We can see that the last term is of order unity when $g_\nu\sim \frac{m_p}{M_{pl}^{1/​3}M_W^{2/​3}}\sim 10^{-8}$, allowing us to rewrite the equation as:
 +$$\left(\frac{T}{T_0}\right)^3 = 1 - \left(\frac{g_\nu}{10^{-8}}\right)^2 \frac{T}{T_0}$$
 +
 +
 +===== Source Code on Git Repository =====
 +
 +  * [[https://​github.com/​dwillcox/​bbn-numu]]
the_nu_wgv.txt ยท Last modified: 2014/07/01 14:24 by vassh