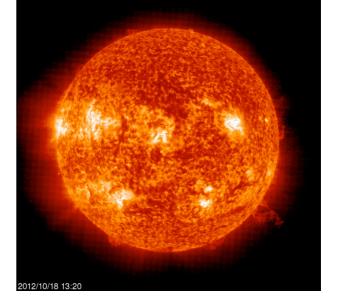

An Introduction to Stars

U. of Illinois

TALENT School, MSU, May 2014

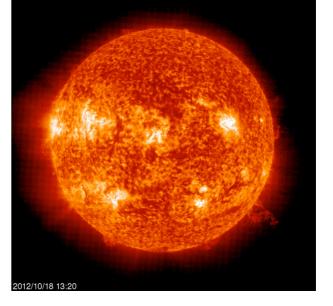
An Introduction to Stars



U. of Illinois

TALENT School, MSU, May 2014

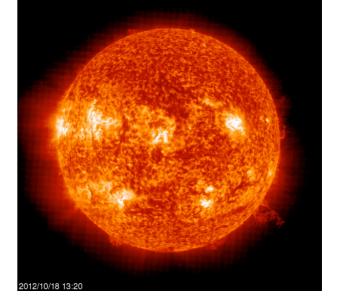
the Sun and all stars:


- constantly emit energy, and
- have finite mass = finite fuel supply

the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

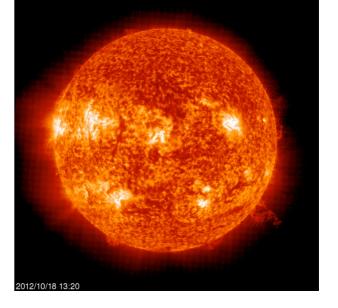


the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

all stars – including the Sun – must eventually "burn out"



the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

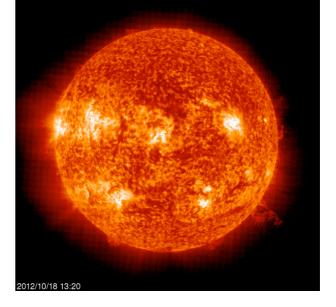
- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:

the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

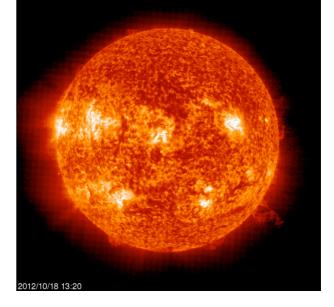

the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!


the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply

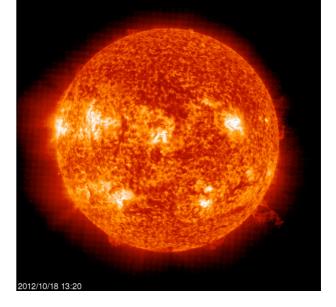
Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!

the Sun and all stars:

- constantly emit energy, and
- have finite mass = finite fuel supply


Thus?

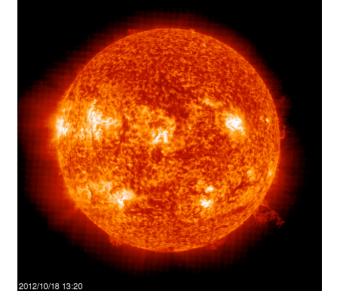
- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!

But the Sun and other stars are alive today, so...?

stars alive today were not alive forever

the Sun and all stars:


- constantly emit energy, and
- have finite mass = finite fuel supply

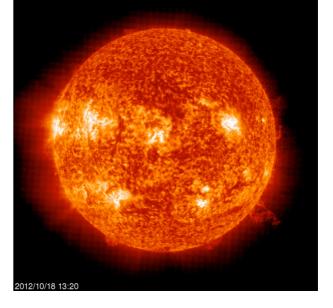
Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!

- stars alive today were not alive forever
- > all stars must be born as well as die

the Sun and all stars:


- constantly emit energy, and
- have finite mass = finite fuel supply

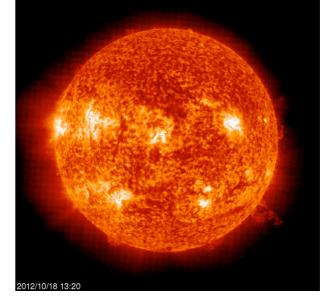
Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!

- stars alive today were not alive forever
- > all stars must be born as well as die
- the Sun and stars have life cycles

the Sun and all stars:


- constantly emit energy, and
- have finite mass = finite fuel supply

Thus?

- All stars including the Sun must eventually "burn out"
- = run out of energy = run out of fuel:
- the Sun all stars are doomed to die

the Sun cannot live forever!

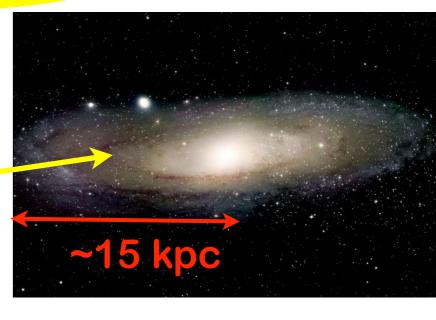
- stars alive today were not alive forever
- > all stars must be born as well as die
- the Sun and stars have life cycles
- stellar mortality also implies possibility of rebirth!

*Astronomical Unit: Earth-Sun distance

 $1AU = 1.5 \times 10^{13} \text{ cm} \approx 500 \text{ light-seconds}$

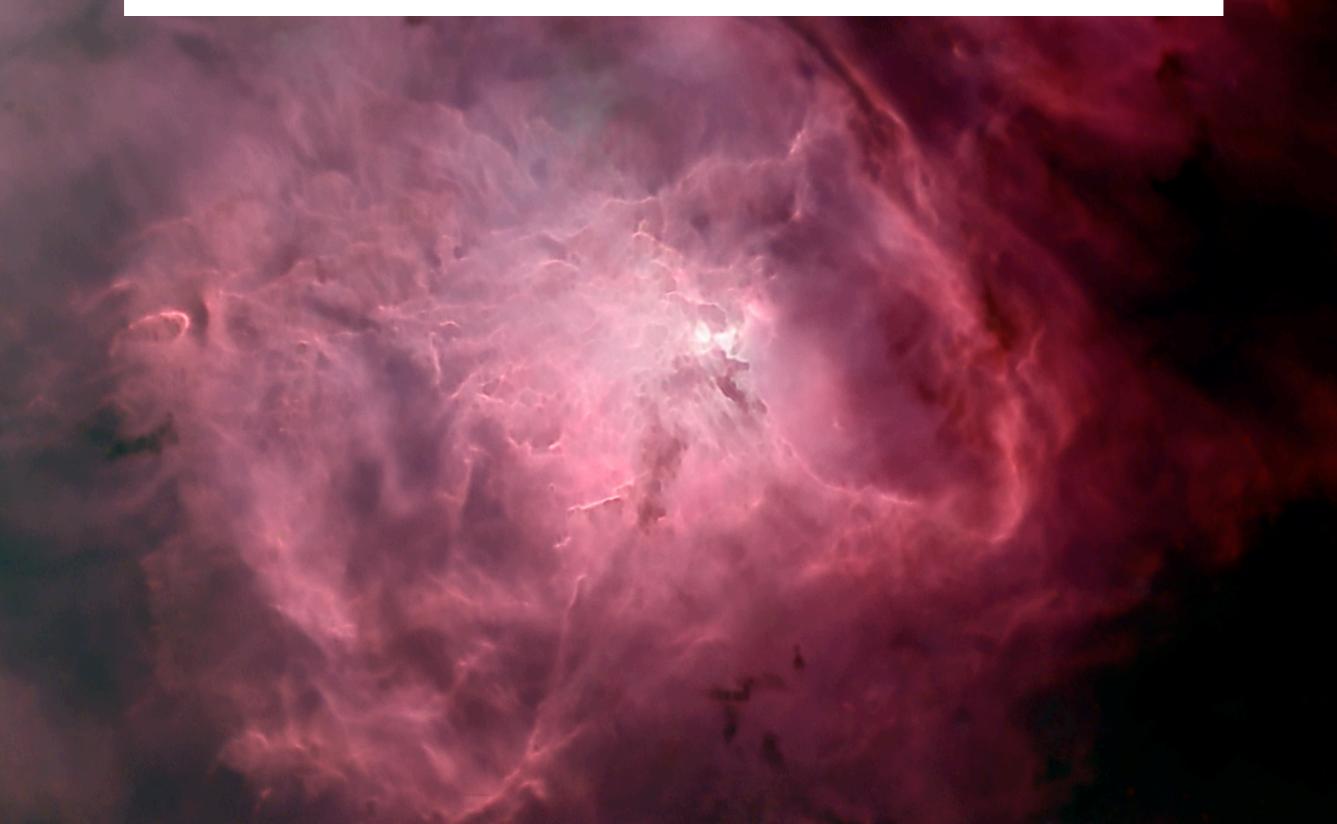
*****Astronomical Unit: **Earth-Sun distance** $1AU = 1.5 \times 10^{13} \text{ cm} \approx 500 \text{ light-seconds}$ \star Parsec: $\frac{1 \text{AU}}{(1 \text{ arcsec})_{\text{radian}}} = 3.16 \times 10^{18} \text{ cm} \approx 3 \text{ light-years}$ 1 pc =nearest star: $d(\alpha \text{Cen}) = 1.3 \text{ pc} = 4 \text{ lyr}$ 1 pc ~ typical star-star separation **1 pc**

***Astronomical Unit:**


Earth-Sun distance

 $1AU = 1.5 \times 10^{13} \text{ cm} \approx 500 \text{ light-seconds}$

★ Parsec: 1 pc = $\frac{1 \text{AU}}{(1 \text{ arcsec})_{\text{radian}}} = 3.16 \times 10^{18} \text{ cm} \approx 3 \text{ light-years}$ nearest star: $d(\alpha \text{Cen}) = 1.3 \text{ pc} = 4 \text{ lyr}$ ➡1 pc ~ typical star-star separation


Milky Way Galaxy: R_{MW}~15 kpc you are here: R_{sun}~8 kpc

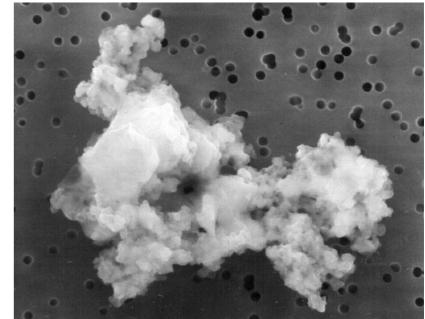
An Introduction to Stars

- **★** Star formation and gravitational instability
- **★ Solar Structure**
- **Hydrogen burning in the Sun**
- **The Evidence: Solar Neutrinos**

Star Formation

stars born in cold gas & dust clumps: molecular clouds Initial protostellar material a small parcel of larger cloud

- • cold gas & dust
- • spinning: net angular momentum

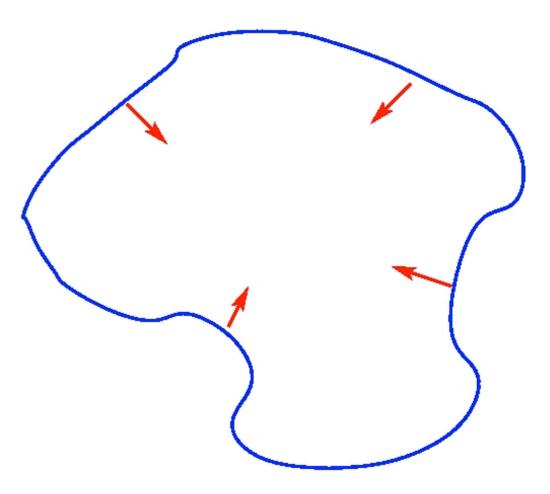

Q: why is L>0 a reasonable assumption?

For simplicity: imagine first a cold cloud with zero spin i.e., zero angular momentum

Q: forces on particles in cloud?

Q: response of particles to these forces?

Q: why is coldness important for this to work?

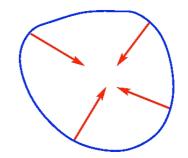

Gravitational Instability

ignoring spin: particles in cold cloud feel forces of

- gravity
- thermal pressure

but if cloud is cold: T low, pressure P = pkT/mparticle small → only important force is gravity gravity → inward motion → denser → stronger gravity → runaway! "gravitational collapse"

Q: why doesn't collapse continue until all matter → point?

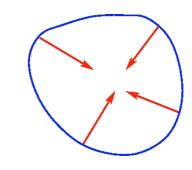

Gravitational Instability

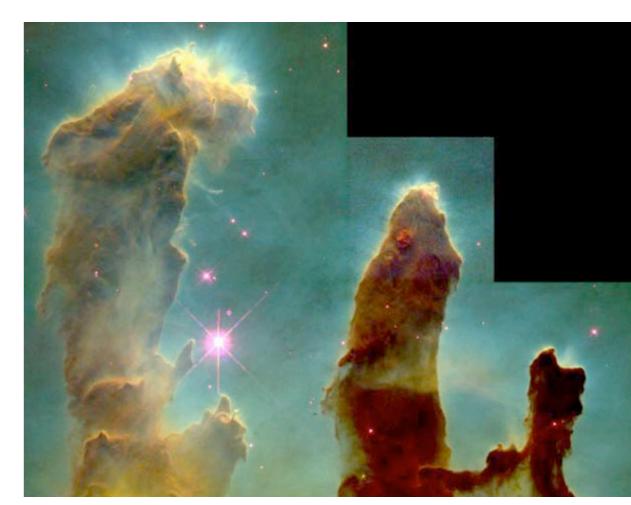
ignoring spin: particles in cold cloud feel forces of

- gravity
- thermal pressure

but if cloud is cold: T low, pressure P = pkT/mparticle small → only important force is gravity gravity → inward motion → denser → stronger gravity → runaway! "gravitational collapse"

Q: why doesn't collapse continue until all matter → point?


Gravitational Instability


ignoring spin: particles in cold cloud feel forces of

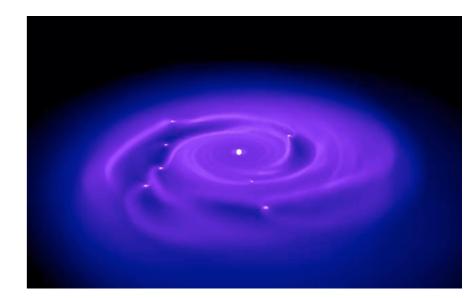
- gravity
- thermal pressure

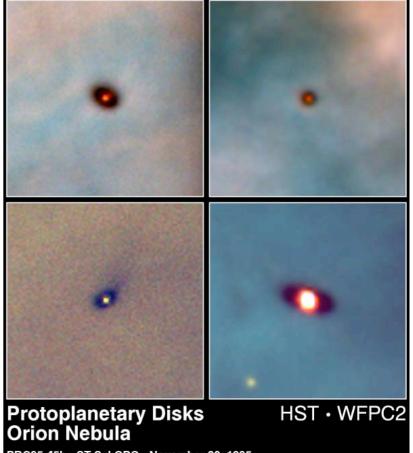
but if cloud is cold: T low, pressure P = pkT/mparticle small → only important force is gravity gravity → inward motion → denser → stronger gravity → runaway! "gravitational collapse"

Q: why doesn't collapse continue until all matter → point?

Nebular Collapse: Birth of Sun and Disk

indeed, most matter compressed → central "proto-Sun"


but real pre-stellar clouds are clumpy parts of larger nebulae


- turbulent motions
- clumps have random but nonzero spins: L>0

spin → axial but not spherical symmetry
→ collapse not spherical

angular momentum "centrifugal barrier"

- collapse easier along z than along R
- protoplanetary disk

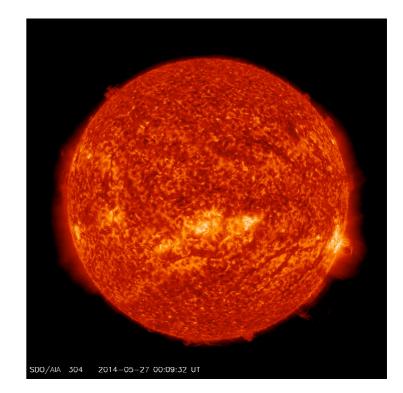
PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Solar Stability and Structure

The Sun's size is constant. Not expanding or collapsing at least on human timescales

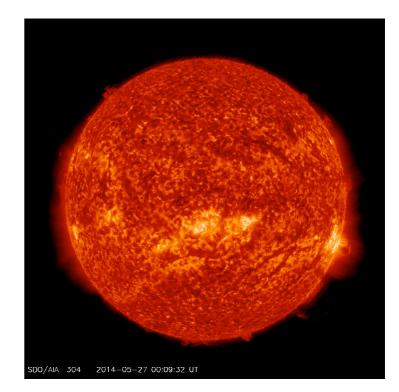
Q: What does this mean for every shell of gas in Sun?

net force: F = 0


- but Sun has mass and gravity
- so must be restoring force: pressure
- exactly balances gravity

The Sun's size is constant. Not expanding or collapsing at least on human timescales

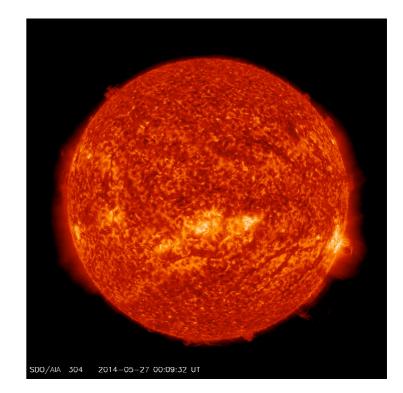
Q: What does this mean for every shell of gas in Sun?


net force: F = 0

- but Sun has mass and gravity
- so must be restoring force: pressure
- exactly balances gravity

The Sun's size is constant. Not expanding or collapsing at least on human timescales

Q: What does this mean for every shell of gas in Sun?

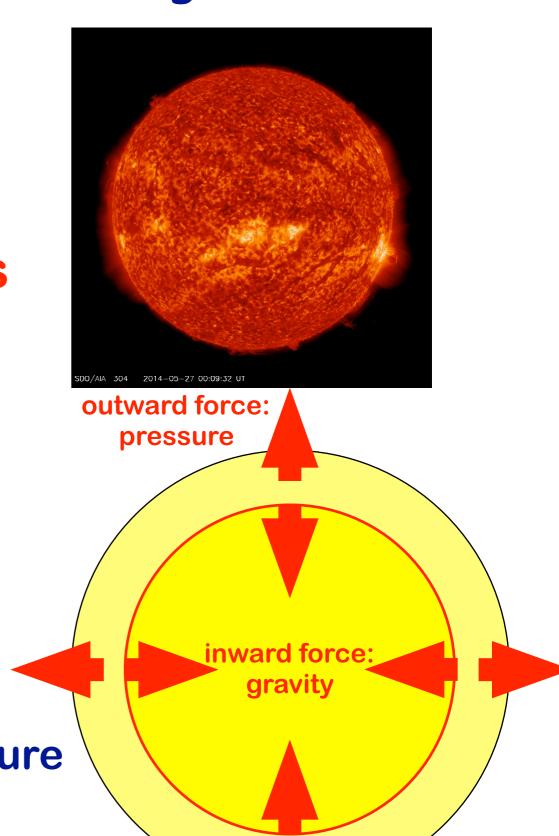


The Sun's size is constant. Not expanding or collapsing at least on human timescales

Q: What does this mean for every shell of gas in Sun?

net force: F = 0

- but Sun has mass and gravity
- so must be restoring force: pressure
- exactly balances gravity



The Sun's size is constant. Not expanding or collapsing at least on human timescales

Q: What does this mean for every shell of gas in Sun?

net force: F = 0

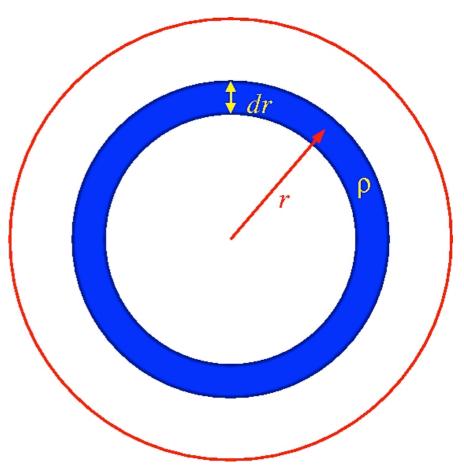
- but Sun has mass and gravity
- so must be restoring force: pressure
- exactly balances gravity

Hydrostatic Equilibrium

Consider a shell of gas in Sun, with with dr, volume $dV = 4\pi r^2 dr$

- net weight: $mg = \rho dV \ Gm(r)/r^2 = 4\pi Gm(r)\rho dr$

– pressure difference:


 $P_{\mathsf{net}} = -P(r+dr) + P(r) = -dP/dr \ dr$

– net pressure force:

 $F_p = P_{\text{net}}A = -4\pi r^2 P_{\text{net}} (\text{up})$

force balance: $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^2}$

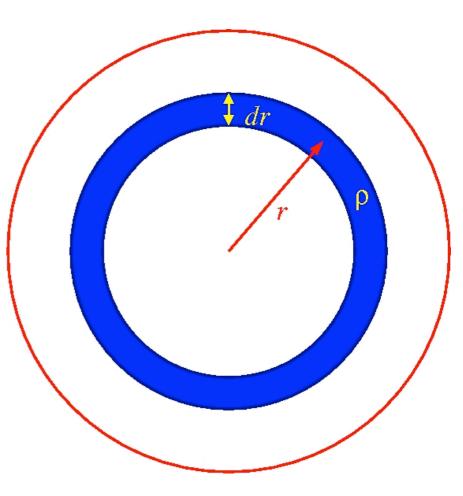
Q: equation of state?

Hydrostatic Equilibrium

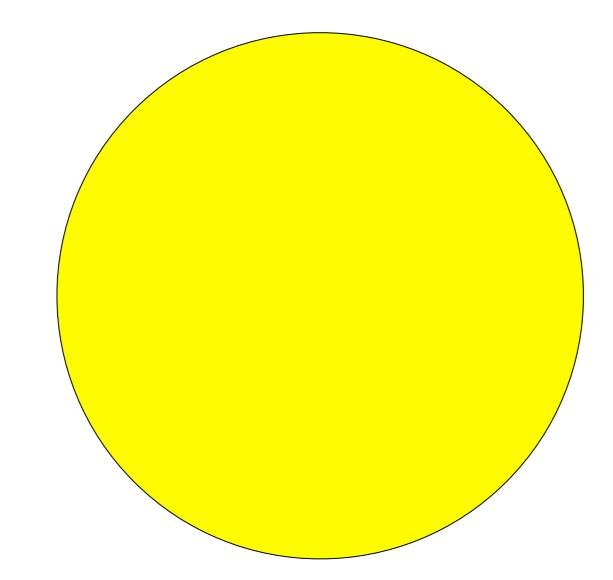
Consider a shell of gas in Sun, with with dr, volume $dV = 4\pi r^2 dr$

- net weight: $mg = \rho dV \ Gm(r)/r^2 = 4\pi Gm(r)\rho dr$

– pressure difference:


 $P_{\mathsf{net}} = -P(r+dr) + P(r) = -dP/dr \ dr$

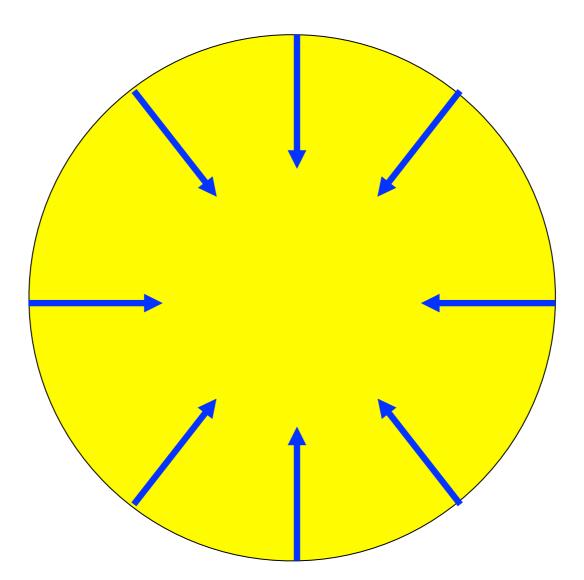
– net pressure force:


 $F_p = P_{\text{net}}A = -4\pi r^2 P_{\text{net}} (\text{up})$

force balance: $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^2}$

Q: equation of state? $p = \rho kT/m + aT^4/3$

The Battle of The Solar Titans Gravity vs Pressure

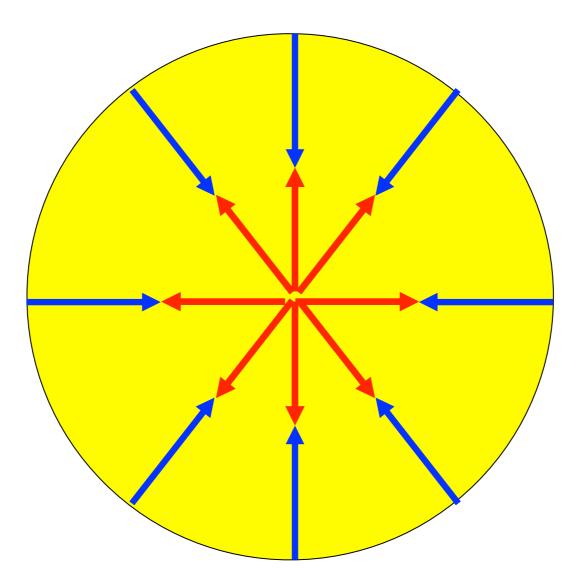

What would the Sun do if...

pressure force > gravity ?

pressure force < gravity ?

Lesson?

The Battle of The Solar Titans Gravity vs Pressure


What would the Sun do if...

pressure force > gravity ?

pressure force < gravity ?

Lesson?

The Battle of The Solar Titans Gravity vs Pressure

What would the Sun do if...

pressure force > gravity ?

pressure force < gravity ?

Lesson?

Energy Transport

at solar core: energy transport is via photon diffusion

photon energy density is $\varepsilon = aT^4$ radial flux is $F_r = \varepsilon c/3$

net flux at r: $F_{\text{net}} = F(r + \delta r) - F(r) \simeq dF/dr \ \delta r$ diffusion: "stepsize" δr is mfp $\lambda = 1/n\sigma \equiv 1/\rho\kappa$ opacity $\kappa = \sigma n/\rho = \sigma/m$ local luminosity: $\ell = 4\pi r^2 F_{\text{net}}$

$$\frac{\ell}{4\pi r^2} = \frac{1}{\rho\kappa} \frac{dF}{dr} = \frac{4acT^3}{3\rho\kappa} \frac{dT}{dr}$$

Energy Generation by Nuke Reactions

put $\rho \varepsilon$ = nuke energy production rate per unit vol

$$\frac{d\ell}{dr} = \rho \varepsilon dV = \rho \varepsilon 4\pi r^2 dr$$
$$\frac{d\ell}{dr} = 4\pi r^2 \rho \varepsilon$$

 $\text{if } q = \langle \sigma_{ab} v \rangle n_a n_b$

= nuke reaction rate per vol for $a + b \rightarrow c + d$ $\rho \varepsilon = Qq$, where energy release $Q = \Delta_a + \Delta_b - \Delta_c - \Delta_d$

Now have differential equations but still need one more thing to solve them What's that?

Boundary Conditions

$$t_{\odot} = 4.6 \text{ Gyr}$$

 $M_{\text{tot}} = M_{\odot} = 2.0 \times 10^{33} \text{ g}$
 $R = R(t_{\odot}) = R_{\odot} = 7.0 \times 10^{10} \text{ cm}$
 $L = L_{\odot} = 3.8 \times 10^{33} \text{ erg/s}$

With these, solve m(r), $\ell(m)$, T(m) (vs time) for nuke rxns, we will need central ρ_c , T_c

Order of magnitude estimation $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^{2}}$ Consider 1-zone Sun:

- rho? T?
- >dP/dr? P?

Order of magnitude estimation $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^{2}}$ Consider 1-zone Sun:

- rho? T?
- >dP/dr? P?

Order of magnitude estimation $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^2}$ Consider 1-zone Sun:

rho? T?

>dP/dr? P?

$$\frac{dP}{dR} \sim \frac{P_c}{R} \\ \sim \frac{GM\rho}{R^2}$$

ideal gas: $P = \rho kT/m$

$$T_c \sim \frac{(m_p/2)P_c}{\rho k} = \frac{GMm_p}{2kR} \sim 10^7 \text{ K}$$

Order of magnitude estimation $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^{2}}$ Consider 1-zone Sun: •rho? T?

dP/dr? P?

$$\frac{dP}{dR} \sim \frac{P_c}{R} \\ \sim \frac{GM\rho}{R^2}$$

ideal gas: $P = \rho kT/m$

$$T_c \sim \frac{(m_p/2)P_c}{\rho k} = \frac{GMm_p}{2kR} \sim 10^7 \text{ K}$$

why m=mp/2?

Order of magnitude estimation $-\frac{dP}{dr} = \frac{Gm(r)\rho}{r^{2}}$ Consider 1-zone Sun: •rho? T? •dP/dr? P? $\frac{dP}{dR} \sim \frac{P_{c}}{R}$ $\sim \frac{GM\rho}{R^{2}}$

ideal gas: $P = \rho kT/m$

$$T_c \sim \frac{(m_p/2)P_c}{\rho k} = \frac{GMm_p}{2kR} \sim 10^7 \text{ K}$$

why m=mp/2?

now compare to professional result...

Standard Solar Model (SSM) Bahcall & Pinsonneault (2000,2004)

conditions at solar center:

$$T_c = 1.57 \times 10^7 \text{ K}$$
$$\rho_c = 152 \text{ g cm}^{-3}$$
$$X_c = \left(\frac{\rho_{\text{H}}}{\rho_{\text{B}}}\right)_c = 0.34$$
$$Y_c = \left(\frac{\rho_{\text{He}}}{\rho_{\text{B}}}\right)_c = 0.64$$

Hydrogen Burning

Sun: main sequence, $4p \rightarrow ^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Sun: main sequence, $4p \rightarrow ^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{14}$$

Sun: main sequence, $4p \rightarrow ^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{14}$$

weak rxn: slow; then

$$d + p \rightarrow^{3} \text{He} + \gamma \tag{15}$$

Sun: main sequence, $4p \rightarrow ^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{14}$$

weak rxn: slow; then

$$d + p \rightarrow {}^{3}\text{He} + \gamma \tag{15}$$

Then: 3 branches

Sun: main sequence, $4p \rightarrow ^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{14}$$

weak rxn: slow; then

$$d + p \rightarrow {}^{3}\text{He} + \gamma \tag{15}$$

Then: 3 branches

 $\frac{PP-I}{^{3}He + {}^{3}He \rightarrow {}^{4}He + p + p}$

Sun: main sequence, $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{14}$$

weak rxn: slow; then

$$d + p \rightarrow^{3} \mathsf{He} + \gamma \tag{15}$$

Then: 3 branches

$$\begin{array}{c} \mathsf{PP}\text{-I} \\ {}^{3}\mathsf{He} + {}^{3}\mathsf{He} \rightarrow {}^{4}\mathsf{He} + p + p \\ {}^{3}\mathsf{He} + {}^{4}\mathsf{He} \rightarrow {}^{7}\mathsf{Be} + \gamma \\ \mathsf{PP}\text{-II} \\ {}^{7}\mathsf{Be} + e \rightarrow {}^{7}\mathsf{Li} + \underbrace{\nu_{e}} \\ {}^{7}\mathsf{Be} + e \rightarrow {}^{7}\mathsf{Li} + \underbrace{\nu_{e}} \\ {}^{7}\mathsf{Li} + p \rightarrow {}^{4}\mathsf{He} + {}^{4}\mathsf{He} \\ {}^{8}\mathsf{B} \rightarrow {}^{8}\mathsf{Be} + e^{+} + \underbrace{\nu_{e}} \\ {}^{8}\mathsf{Be} \rightarrow {}^{4}\mathsf{He} + {}^{4}\mathsf{He} \\ \end{array}$$

The PP-II and PP-III Chains

Q: what sets relative importance of PP-II vs III?

The PP-II and PP-III Chains

 $\label{eq:second} \begin{array}{ll} {}^{3}\text{He}+{}^{4}\text{He}{\rightarrow}{}^{7}\text{Be}+\gamma \\ & \text{PP-II} & \text{PP-III} \\ {}^{7}\text{Be}+e{\rightarrow}{}^{7}\text{Li}+{\color{black}\nu_{e}} & {}^{7}\text{Be}+p{\rightarrow}{}^{8}\text{B}+\gamma \\ {}^{7}\text{Li}+p{\rightarrow}{}^{4}\text{He}+{}^{4}\text{He} & {}^{8}\text{B}{\rightarrow}{}^{8}\text{Be}+e{}^{+}+{\color{black}\nu_{e}} \\ & {}^{8}\text{Be}{\rightarrow}{}^{4}\text{He}+{}^{4}\text{He} \end{array}$

Q: what sets relative importance of PP-II vs III?

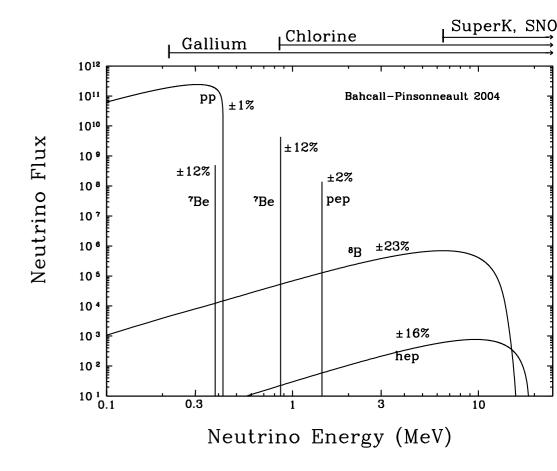
Other main pp chains: different ³He fate ⁷Be branching key:

- e capture rate $\sim 1000 \times \ p$ capture rate
- ⁷Be: 15% of ν production
- $^{8}\text{B} \sim 0.02\%$ of ν production

The CNO Cycle

pre-existing C, N, O act as $4p \rightarrow ^{4}$ He catalyst $^{12}C \xrightarrow{(p,\gamma)} ^{13}N \xrightarrow{e^{+}\nu_{e}} ^{13}C$ $(p,\alpha) \uparrow \qquad \qquad \downarrow (p,\gamma)$ $^{15}N \xrightarrow{e^{+}\nu_{e}} ^{15}O \xrightarrow{(p,\gamma)} ^{14}N$

Coulomb barriers high (Z = 6,7,8): need high T_c to \Rightarrow CNO cycle minor in Sun (CNO $\rightarrow 1.6\% L_{\odot}$) but main H-burner for $M \gtrsim 1.5 M_{\odot}$

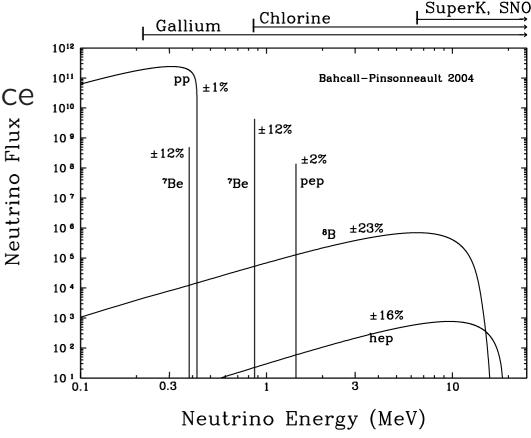

The Evidence: Solar Neutrinos

			Total SSM Flux
Rxn	$E_{ u,\max} = Q$	$\langle E_{\nu} \rangle$	$\Phi_{ u}$ (10 ¹⁰ $ u$ cm ⁻² s ⁻¹)
11	0.420 MeV	0.265 MeV	6.0
⁷ Be $e \rightarrow$ ⁷ Li ν	lines: ${}^{7}Li^{gs} = 0.861$	MeV; 7 Li [*] = 0.383 MeV	0.47
$^{8}B \rightarrow ^{8}Be \ e \ \nu$	17.98 MeV	9.63 MeV	$5.8 imes10^{-4}$

Q: Why are the ⁷Be neutrinos monoenergetic?

			Total SSM Flux
Rxn	$E_{\nu,\max} = Q$	$\langle E_{\nu} \rangle$	$\Phi_{ u}~(10^{10}~ u~{ m cm^{-2}~s^{-1}})$
1	0.420 MeV	0.265 MeV	6.0
⁷ Be $e \rightarrow$ ⁷ Li ν	lines: ${}^{7}Li^{gs} = 0.861$	MeV; ${}^{7}Li^{*} = 0.383$ MeV	0.47
$^{8}B \rightarrow ^{8}Be \ e \ \nu$	17.98 MeV	9.63 MeV	$5.8 imes10^{-4}$

Q: Why are the ⁷Be neutrinos monoenergetic?

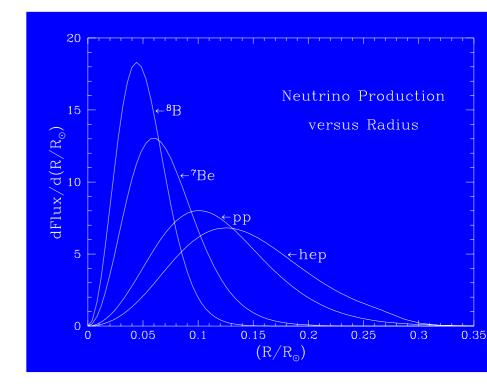


			Total SSM Flux $(10^{10} \text{ subscript{a}}^2 \text{ subscript{a}}^1)$
Rxn	$E_{ u,\max} = Q$	$\langle E_{\nu} \rangle$	$\Phi_{ u}$ (10 ¹⁰ $ u$ cm ⁻² s ⁻¹)
11	0.420 MeV	0.265 MeV	6.0
⁷ Be $e \rightarrow$ ⁷ Li ν	lines: ${}^{7}Li^{gs} = 0.861$	MeV; ${}^{7}Li^{*} = 0.383$ MeV	0.47
$^{8}B \rightarrow ^{8}Be \ e \ \nu$	17.98 MeV	9.63 MeV	$5.8 imes10^{-4}$

Q: Why are the ⁷Be neutrinos monoenergetic?

pp neutrinoslargest flux, but low energies7 Be neutrinosmonoenergetic, strong T_c^8 dependence8 B neutrinoscontinuum, ultrastrong T_c^{20} dep $T_c^{10^4}$ 9 B neutrinoscontinuum, ultrastrong T_c^{20} dep $T_c^{10^4}$

What should this mean for production vs radius?



			Total SSM Flux
Rxn	$E_{\nu,\max} = Q$	$\langle E_{\nu} \rangle$	$\Phi_{ u}~(10^{10}~ u~{ m cm}^{-2}~{ m s}^{-1})$
11	0.420 MeV	0.265 MeV	6.0
⁷ Be $e \rightarrow$ ⁷ Li ν	lines: ${}^{7}Li^{gs} = 0.861$	MeV; ${}^{7}Li^{*} = 0.383$ MeV	0.47
$^{8}B \rightarrow ^{8}Be \ e \ \nu$	17.98 MeV	9.63 MeV	$5.8 imes10^{-4}$

Q: Why are the ⁷Be neutrinos monoenergetic?

pp neutrinoslargest flux, but low energies⁷Be neutrinosmonoenergetic, strong $\sim T_c^8$ dependence⁸B neutrinoscontinuum, ultrastrong $\sim T_c^{20}$ dep

What should this mean for production vs radius?

