Living with Supernovae

Brian Fields

U. of Illinois

TALENT School, MSU, May 2014

Living with Supernovae

Brian Fields

U. of Illinois

TALENT School, MSU, May 2014

Supernova Explosions

Core-Collapse Supernovae

Symphonies of the Fundamental Forces

Core-Collapse Supernovae Symphonies of the Fundamental Forces

Lives of Massive Stars (> 8-10 M_{sun})

- **★ Begin burning** H → He
- ★ Then, at accelerating pace
 - ▶ repeated cycles of ash → fuel
 - ever-heavier elements in core
- "onion skin" structure

Core-Collapse Supernovae Symphonies of the Fundamental Forces

Lives of Massive Stars (> 8-10 M_{sun})

- **★ Begin burning** H → He
- **★** Then, at accelerating pace
 - ▶ repeated cycles of ash → fuel
 - ever-heavier elements in core
- "onion skin" structure

When core ⁵⁶Fe: max binding

- ★ core fusion stops: support by degen e⁻
- **★ When** $M_{\text{Fe core}} > M_{\text{Chandra}} \sim 1.4 M_{\text{sun}}$ unstable gravitational collapse

Core-Collapse Supernovae Symphonies of the Fundamental Forces

Lives of Massive Stars (> 8-10 M_{sun})

- **★ Begin burning** H → He
- ★ Then, at accelerating pace
 - ▶ repeated cycles of ash → fuel
 - ever-heavier elements in core
- "onion skin" structure

When core ⁵⁶Fe: max binding

- ★ core fusion stops: support by degen e⁻
- **★ When** $M_{\text{Fe core}} > M_{\text{Chandra}} \sim 1.4 M_{\text{sun}}$ unstable gravitational collapse
- ★ Core "bounce" at nuke density
- ★ "Neutrino bomb" ignited: ~ few 10⁵³ erg

 Koshiba & Kamiokande
- Shock launched: ~10⁵¹ erg Explosion!

Core-Collapse Supernovae in the Great Survey Era a Gimpse of Things to Come

Brian Fields University of Illinois

Core-Collapse Supernovae in the Great Survey Era a Glimpse of Things to Come

Amy Lien 連雅琳 GSFC

Brian Fields University of Illinois

key advance:

large field of view & large collecting area

- each exposure gives deep image of large chunk of sky
- will feasibly make

deep scans
huge sky coverage--up to entire visible sky
repeated exposures: movies

→ Optical Campaigns Lunnan talk

prototype: SDSS

recent/ongoing: PTF, Pan-STARRS, DES

full-scale: LSST

- Key science driver: Type la cosmology
- Radio: Square Kilometer Array (SKA)

key advance:

large field of view & large collecting area

- each exposure gives deep image of large chunk of sky
- will feasibly make

deep scans

huge sky coverage--up to entire visible sky

repeated exposures: movies

→ Optical Campaigns Lunnan talk

prototype: SDSS

recent/ongoing: PTF, Pan-STARRS, DES

full-scale: LSST

- Key science driver: Type la cosmology
- Radio: Square Kilometer Array (SKA)

key advance:

large field of view & large collecting area

each exposure gives deep image of large chunk of sky

key advance:

large field of view & large collecting area

- each exposure gives deep image of large chunk of sky
- will feasibly make

deep scans

huge sky coverage--up to *entire* visible sky repeated exposures: *movies*

key advance:

large field of view & large collecting area

- each exposure gives deep image of large chunk of sky
- will feasibly make

deep scans

huge sky coverage--up to *entire* visible sky repeated exposures: *movies*

→ Optical Campaigns Lunnan talk

prototype: SDSS

recent/ongoing: PTF, Pan-STARRS, DES

full-scale: LSST

key advance:

large field of view & large collecting area

- each exposure gives deep image of large chunk of sky
- will feasibly make

deep scans

huge sky coverage--up to *entire* visible sky repeated exposures: *movies*

→ Optical Campaigns Lunnan talk

prototype: SDSS

recent/ongoing: PTF, Pan-STARRS, DES

full-scale: LSST

Key science driver: Type la cosmology

key advance:

large field of view & large collecting area

each exposure gives deep image of large chunk of sky

will feasibly make

deep scans

huge sky coverage--up to entire visible sky

repeated exposures: movies

→ Optical Campaigns Lunnan talk

prototype: SDSS

recent/ongoing: PTF, Pan-STARRS, DES

full-scale: LSST

Key science driver: Type la cosmology

Radio: Square Kilometer Array (SKA)

key advance

large field of viev

- each exposu large chunk
- will feasibly deep scans huge sky coverage repeated exposur
- Optical Cam prototype: SDSS

recent/ongoing:

full-scale: LSST

- Key science cosmology
- Radio: Squa (SKA)

key advance

large field of viev

- each exposu large chunk
- * will feasibly deep scans
- ★ Optical Cam prototype: SDSS

recent/ongoing:

full-scale: LSST

- Key science cosmology
- 🜟 Radio: Squa (SKA)

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

- ★ Use reasonable inputs
- * Make honest forecast
- ★ Treat results as illustrative

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

- ★ Use reasonable inputs
- * Make honest forecast
- ★ Treat results as illustrative

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

e.g., accurate photometric redshifts for host galaxies

★ Use reasonable inputs

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

- ★ Use reasonable inputs
- * Make honest forecast

Our philosophy: future-looking

* Assume all goes as planned

surveys come online

crucial problems will be solved

- ★ Use reasonable inputs
- * Make honest forecast
- ★ Treat results as illustrative

Supernovae from Optical Sky Surveys

Opening the Time Domain

Epoch - Reference = Difference

SN Legacy Survey ~4 month scan

Opening the Time Domain

Epoch - Reference = Difference

SN Legacy Survey ~4 month scan

Opening the Time Domain

Epoch - Reference = Difference

SN Legacy Survey

-4 month scan
Photometric transient detection via image subtraction

Movie Stars

Opening the Time Domain

Epoch - Reference = Difference

SN Legacy Survey

Photometric transient detection via image subtraction

Movie Stars

★ Supernovae: all types!

Opening the Time Domain

Epoch - Reference = Difference

SN Legacy Survey

-4 month scan
Photometric transient detection via image subtraction

Movie Stars

- * Supernovae: all types!
- also: gamma-ray burst afterglows, active galaxy flaring, variable stars, killer asteroids, ...

Central Input:

Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

massive star death "instantaneous"

$$\mathcal{R}_{
m SN} \propto \dot{
ho}_{\star}$$

trend: factor ~10 rise to z=1, then ???

Central Input: Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

massive star death "instantaneous"

star formation timescales << pre-SN lifetime

$$\mathcal{R}_{\mathrm{SN}} \propto \dot{
ho}_{\star}$$

* star formation rate via light from massive stars

direct: UV

reprocessed: gas lines; dust | IR

trend: factor ~10 rise to z=1, then ???

cosmic supernova rate:

Central Input:

Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

massive star death "instantaneous"

star formation timescales << pre-SN lifetime

$$\mathcal{R}_{\mathrm{SN}} \propto \dot{
ho}_{\star}$$

star formation rate via light from massive stars

direct: UV

reprocessed: gas lines; dust | IR

trend: factor ~10 rise to z=1, then ???

cosmic supernova rate:

all-sky, all redshift: ~ 10 events/sec

Central Input:

Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

massive star death "instantaneous"

star formation timescales << pre-SN lifetime

$$\mathcal{R}_{
m SN} \propto \dot{
ho}_{\star}$$

star formation rate via light from massive stars

direct: UV

reprocessed: gas lines; dust | IR

trend: factor ~10 rise to z=1, then ???

cosmic supernova rate:

all-sky, all redshift: ~ 10 events/sec

key uncertainty: (optically) invisible SN

failed explosions: direct collapse to black hole?

dust obscuration of star-forming regions

The Future: Core-Collapse Cornucopia

Lien & BDF

- Unbiased, untargeted supernova search
- ★ LSST:
 - ~300,000 core-collapse events each year!
 - conservatively > 1,000,000 CC events in survey lifetime
- Cosmic Supernova Rate by direct counting

rate measured to 10% out to z~1

tradeoff: redshift range (scan depth) vs SN counts (sky coverage)

looming uncertainty: dust obscuration

Deep Drilling mode complementary

deep exposures on 40 deg²

CC detections to $z\sim1.5$

Core-collapse come for free!

survey characteristics tuned to SN Ia automatically well-suited for SN II

How Many is I Million Supernovae?

1. SN 1006

2. SN 1054

1. SN 1006

Historical Supernovae

CBAT tabulation

1. SN 1006

2. SN 1054

Year **Historical Supernovae** CBAT tabulation

1. SN 1006

Year

Year

What can we do with 10⁶ CC supernovae? Demographics & Classification

volume limited to 200 Mpc
(z=0.05):

complete, unbiased sample of supernova types

~all host galaxies visible!

progenitor stars can be seen in nearest events

high statistics out to z~0.5

dependence on galactic and cosmic environment

rare events become commonplace (fizzle? AIC?)

★ deep drilling events to z~1.5

set by bright tail of luminosity function: how high does it go?

Survey Supernovae: Neutrino Impact

Lunardini talk

- Only very local SNe resolved in neutrinos
- But supernovae out to cosmic horizon unresolved, diffuse supernova nu background

Gusienov, Zeldovich 67; Krauss, Glashow, Schramm 84

Lunardini talk

- Only very local SNe resolved in neutrinos
- But supernovae out to cosmic horizon unresolved, diffuse supernova nu background Gusienov, Zeldovich 67; Krauss, Glashow, Schramm 84

Dominates nu flux in ~10-40 MeV window

Lunardini talk

- Only very local SNe resolved in neutrinos
- But supernovae out to cosmic horizon unresolved, diffuse supernova nu background Gusienov, Zeldovich 67; Krauss, Glashow, Schramm 84
- ★ Dominates nu flux in ~10-40 MeV window
- ★ Intensity is cosmic line integral

$$\frac{d\Phi_{\nu}}{d\epsilon_{\nu}} = \int_{0}^{\infty} dz \left| \frac{dt}{dz} \right| (1+z) \frac{dq_{\text{comov}}}{d\epsilon_{\nu}^{\text{em}}}$$

Lunardini talk

- Only very local SNe resolved in neutrinos
- But supernovae out to cosmic horizon unresolved, diffuse supernova nu background Gusienov, Zeldovich 67; Krauss, Glashow, Schramm 84
- ★ Dominates nu flux in ~10-40 MeV window
- ★ Intensity is cosmic line integral

$$\frac{d\Phi_{\nu}}{d\epsilon_{\nu}} = \int_{0}^{\infty} dz \left| \frac{dt}{dz} \right| (1+z) \frac{dq_{\text{comov}}}{d\epsilon_{\nu}^{\text{em}}}$$

Source function: separates

$$\left. rac{dN_{
u}}{d\epsilon_{
u}^{
m em}} \right|_{\epsilon_{
u}^{
m em}=(1+z)\epsilon_{
u}}$$
 neutrino output per SN

Lunardini talk

- Only very local SNe resolved in neutrinos
- But supernovae out to cosmic horizon unresolved, diffuse supernova nu background Gusienov, Zeldovich 67; Krauss, Glashow, Schramm 84
- ★ Dominates nu flux in ~10-40 MeV window
- ★ Intensity is cosmic line integral

$$\frac{d\Phi_{\nu}}{d\epsilon_{\nu}} = \int_{0}^{\infty} dz \left| \frac{dt}{dz} \right| (1+z) \frac{dq_{\text{comov}}}{d\epsilon_{\nu}^{\text{em}}}$$

Source function: separates

$$\left. rac{dN_{
u}}{d\epsilon_{
u}^{
m em}} \right|_{\epsilon_{
u}^{
m em}=(1+z)\epsilon_{
u}}$$
 neutrino output per SN

Synoptic Surveys and the DSNB

Lien, BDF, and Beacom 2010

- Synoptic surveys directly observe large fraction of nuproducing SNe out to z~1
- Most of DSNB signal is from z<1</p>
- Surveys remove astrophysical rate uncertainty
- Resulting DSNB flux is hard lower limit

omits dust-obscured or failed SN

energy dependence separates low/high redshift sources

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- **OFailed SN**
 - O Collapse
 - → Black hole
 - O No optical explosion
 - O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- O Collapse
 - → Black hole
- O No optical explosion
- O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

- **OFailed SN**
 - O Collapse
 - → Black hole
 - O No optical explosion
 - O Neutrino emission same or enhanced!
- OMissed in optical SN surveys
- ODetected by neutrino observatories

Great Survey Era is dawning!

time-domain astronomy revolutionized

★ Great Survey Era is dawning!

time-domain astronomy revolutionized

Synoptic surveys supernova bonanza

core collapse come for free! all-sky, uniform datasets

volume limited CC sample to ~ 200 Mpc

large statistics to z~0.5

deep drilling to z~1.5

★ Great Survey Era is dawning!

time-domain astronomy revolutionized

Synoptic surveys supernova bonanza

core collapse come for free! all-sky, uniform datasets volume limited CC sample to $\sim 200 \text{ Mpc}$ large statistics to $z{\sim}0.5$

deep drilling to z~1.5

★ Unprecedented CC SN sample

> 1,000,000 CC events seen: statistics for classification, evolution, environment

host galaxies seen to z~0.2, then orphans emerge

rare events become commonplace

★ Great Survey Era is dawning!

time-domain astronomy revolutionized

★ Synoptic surveys ⇒ supernova bonanza

core collapse come for free! all-sky, uniform datasets volume limited CC sample to $\sim 200 \text{ Mpc}$ large statistics to $z\sim 0.5$ deep drilling to $z\sim 1.5$

Unprecedented CC SN sample

> 1,000,000 CC events seen: statistics for classification, evolution, environment host galaxies seen to $z\sim0.2$, then orphans emerge rare events become commonplace

Application Example: SN Nu Background

survey supernova rate removes astrophysical uncertainty excess neutrinos probe "invisible" supernovae; up to 50% allowed today!

★ Great Survey Era is dawning!

time-domain astronomy revolutionized

★ Synoptic surveys ⇒ supernova bonanza

core collapse come for free! all-sky, uniform datasets

volume limited CC sample to ~ 200 Mpc

large statistics to z~0.5

deep drilling to z~1.5

Unprecedented CC SN sample

> 1,000,000 CC events seen: statistics for classification, evolution, environment

host galaxies seen to z~0.2, then orphans emerge

rare events become commonplace

Application Example: SN Nu Background

survey supernova rate removes astrophysical uncertainty

excess neutrinos probe "invisible" supernovae; up to 50% allowed today!

A great time to work on supernovae!

observers: now is the time to plan followup!

theorists: now is the time to lay your bets!

References

- A. Lien and B.D. Fields 2009 JCAP 01, 047L; arXiv:0902.979; 2009JCAP...
 01..047L
- A. Lien, B.D. Fields, and J.F. Beacom; 2010
 PRD 81, 083001; arXiv:1001.3678;
 2010PhRvD..81h3001L
- A. Lien, N. Chakraborty, B.D.Fields, and A. Kemball 2011 ApJ 740, 23L; arXiv: 1107.0775; 2011ApJ...740...23L

When Stars Attack!

Live Radioactivities as Signatures of Near-Earth Supernova Explosions

Brian Fields
Astronomy & Physics, U
Illinois

Nearby Supernova Collaborators

Themis Athanassiadou

Scott Johnson

Swiss National Supercomputing Center

Kathrin Hochmuth

Technical U. Munich

John Ellis CERN

Brian Fry

U. Illinois

Supernovae and Nucleosynthesis

- both hydrostatic and explosive
- main products:
 - ✓ alpha nuclei: ¹²C, ¹⁶O, ..., ⁴⁰Ca
 - √ Fe peak

Supernovae and Nucleosynthesis

- both hydrostatic and explosive
- main products:
 - √ alpha nuclei: ¹²C, ¹6O, ..., ⁴⁰Ca
 - √ Fe peak
- medium-lived radioactivities: ⁶⁰Fe, ²⁶Al, ⁵³Mn, ¹⁴⁶Sm(?)

- both hydrostatic and explosive
- main products:
 - ✓ alpha nuclei: ¹²C, ¹⁶O, ..., ⁴⁰Ca
 - √ Fe peak
- medium-lived radioactivities: ⁶⁰Fe, ²⁶Al, ⁵³Mn, ¹⁴⁶Sm(?)
- → ⁶⁰Fe: made by neutron captures

 "weak s-process"

```
^{56}Fe(n, \gamma)^{57}Fe(n, \gamma)^{58}Fe(n, \gamma)^{59}Fe(n, \gamma)^{60}Fe
```

- both hydrostatic and explosive
- main products:
 - √ alpha nuclei: ¹²C, ¹⁶O, ..., ⁴⁰Ca
 - √ Fe peak
- medium-lived radioactivities: ⁶⁰Fe, ²⁶Al, ⁵³Mn, ¹⁴⁶Sm(?)
- → ⁶⁰Fe: made by neutron captures

 "weak s-process"

```
^{56}Fe(n, \gamma)^{57}Fe(n, \gamma)^{58}Fe(n, \gamma)^{59}Fe(n, \gamma)^{60}Fe
```


- both hydrostatic and explosive
- main products:
 - √ alpha nuclei: ¹²C, ¹6O, ..., ⁴⁰Ca
 - √ Fe peak
- medium-lived radioactivities: ⁶⁰Fe, ²⁶Al, ⁵³Mn, ¹⁴⁶Sm(?)
- → ⁶⁰Fe: made by neutron captures

 "weak s-process"
 - 56 Fe $(n,\gamma)^{57}$ Fe $(n,\gamma)^{58}$ Fe $(n,\gamma)^{59}$ Fe $(n,\gamma)^{60}$ Fe large theoretical uncertainties in yield sensitive to stellar evolution, nuke rates accuracy ~order of magnitude

- both hydrostatic and explosive
- main products:
 - ✓ alpha nuclei: ¹²C, ¹⁶O, ..., ⁴⁰Ca
 - √ Fe peak
- medium-lived radioactivities: ⁶⁰Fe, ²⁶Al, ⁵³Mn, ¹⁴⁶Sm(?)
- → ⁶⁰Fe: made by neutron captures

 "weak s-process"
 - 56 Fe $(n,\gamma)^{57}$ Fe $(n,\gamma)^{58}$ Fe $(n,\gamma)^{59}$ Fe $(n,\gamma)^{60}$ Fe large theoretical uncertainties in yield sensitive to stellar evolution, nuke rates accuracy ~order of magnitude
- r-process? 182Hf, 244Pu

Nearby Supernovae

Cosmic WMD: Rates

- ★How often? Depends on how far! Shklovskii 68
- **★Rate of Supernovae inside d:**
 - Galactic supernova rate today: $\mathcal{R}_{\mathrm{SN}}$
 - in homog. disk, scale height

MW disk: side view

$$h h \sim 100 \text{ pc}$$

$$\lambda(< d) = \frac{V_{\text{disk}}(< d)}{V_{\text{disk,total}}} \mathcal{R}_{\text{SN}} = (10 \text{ Myr})^{-1} \left(\frac{d}{30 \text{pc}}\right)^{3}$$

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!</p>

Cosmic WMD: Rates

- ★How often? Depends on how far! Shklovskii 68
- **★Rate of Supernovae inside d:**
 - Galactic supernova rate today: $\mathcal{R}_{\mathrm{SN}}$
 - in homog. disk, scale height

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!</p>

Cosmic WMD: Rates

- ★How often? Depends on how far! Shklovskii 68
- **★Rate of Supernovae inside d:**
 - Galactic supernova rate today: $\mathcal{R}_{\mathrm{SN}}$
 - in homog. disk, scale height

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!</p>

Nachbarsternsupernovaexplosionsgefahr or Attack of the Death Star!

Nachbarsternsupernovaexplosionsgefahr or Attack of the Death Star!

or

Attack of the Death Star!

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott talk

or

Attack of the Death Star!

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott talk

lonizing radiation

- initial gamma, X, UV rays
 subsequent diffusive cosmic rays
- destroy ozone in atmosphere

Ruderman 74; Ellis & Schramm 94

solar UV kills bottom of food chain

Crutzen & Bruhl 96; Gehrels etal 03; Melott & Thomas groups; Smith, Sclao, & Wheeler 04

or

Attack of the Death Star!

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott talk

lonizing radiation

- initial gamma, X, UV rays
 subsequent diffusive cosmic rays
- destroy ozone in atmosphere

Ruderman 74; Ellis & Schramm 94

solar UV kills bottom of food chain

Crutzen & Bruhl 96; Gehrels etal 03; Melott & Thomas groups; Smith, Sclao, & Wheeler 04

Neutrinos

neutrino-nucleon elastic scattering:

"linear energy transfer"

DNA damage

Collar 96, but see Karam 02

or

Attack of the Death Star!

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott talk

lonizing radiation

- initial gamma, X, UV rays
 subsequent diffusive cosmic rays
- destroy ozone in atmosphere

Ruderman 74; Ellis & Schramm 94

solar UV kills bottom of food chain

Crutzen & Bruhl 96; Gehrels etal 03; Melott & Thomas groups; Smith, Sclao, & Wheeler 04

Neutrinos

neutrino-nucleon elastic scattering:

"linear energy transfer"

DNA damage

Collar 96, but see Karam 02

The Smoking Gun

Ellis, BDF, & Schramm 1996

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Chandra

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Need observable SN "fingerprint"

"uclear Signature

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Need observable SN "fingerprint"

uclear Signature

X Stable nuclides: don't know came from SN

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c
Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Need observable SN "fingerprint" uclear Signature

- X Stable nuclides: don't know came from SN
- ✓ Live radioactive isotopes: none left on Earth If found, must come from SN!

The Fury of Aerial Bombardment: Supernova Blast Passage--Global View

BDF, Athanassiadou, Johnson 2008

Supernova Remnant Evolution

> Simulation:

FLASH Fryxell et al 2000

Adaptive Mesh Refinement

- geometry: cyindrical
- $E_{\text{init}} = 10^{51} \text{erg} \equiv 1 \text{ foe}$
- $n_{\rm ISM} = 1 \, \text{particle cm}^{-3}$

The Fury of Aerial Bombardment: Supernova Blast Passage--Global View

BDF, Athanassiadou, Johnson 2008

Supernova Remnant **Evolution**

> Simulation:

FLASH Fryxell et al 2000

Adaptive Mesh Refinement

geometry: cyindrical

 $E_{\text{init}} = 10^{51} \text{erg} \equiv 1 \text{ foe}$

The Fury of Aerial Bombardment: Supernova Blast Passage--Global View

BDF, Athanassiadou, Johnson 2008

Supernova Remnant **Evolution**

> Simulation:

FLASH Fryxell et al 2000

Adaptive Mesh Refinement

geometry: cyindrical

 $E_{\text{init}} = 10^{51} \text{erg} \equiv 1 \text{ foe}$

 $n_{\rm ISM} = 1 \, \text{particle cm}^{-3}$

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Simulation:

FLASH Fryxell et al 2000

Blast Properties:

SN at 10 pc

Geometry:

Cylindrical

1 AU = Earth's orbit

366

number of blacks -

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Simulation:

FLASH Fryxell et al 2000

Blast Properties:

SN at 10 pc

Geometry:

Cylindrical

1 AU = Earth's orbit

BDF, Athanassiadou, & Johnson 2008

time = 0.000 ps number of blocks = 240 AMR levels = 3

Now in 3-D!

Now in 3-D!

Now in 3-D!

Assault on the Heliosphere: Lessons

Hydrodynamic collision:

✓ Supernovae < few 10 pc penetrate inside ~few AU

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- √ Why? Happy(?) accident
 - Ram pressures $\rho v^2(\mathrm{SN}, 10\mathrm{pc}) = \rho v^2(\mathrm{SW}, 1\mathrm{AU}) = 2 \mathrm{~nPa}$

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- √ Why? Happy(?) accident
 - Ram pressures $\rho v^2(\mathrm{SN}, 10\mathrm{pc}) = \rho v^2(\mathrm{SW}, 1\mathrm{AU}) = 2 \mathrm{~nPa}$

Since $r_{\text{shock-Sun}} \sim 1 \text{AU}$ careful simulation warranted

- ions vs neutrals, dust, 3-D, B fields...
- "vanilla" model is worst case: most effects "beneficial" for matter deposition

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- √ Why? Happy(?) accident
 - Ram pressures $\rho v^2(\mathrm{SN}, 10\mathrm{pc}) = \rho v^2(\mathrm{SW}, 1\mathrm{AU}) = 2 \mathrm{~nPa}$

Since $r_{\text{shock-Sun}} \sim 1 \text{AU}$ careful simulation warranted

- ions vs neutrals, dust, 3-D, B fields...
- "vanilla" model is worst case: most effects "beneficial" for matter deposition

For today:

Take seriously possibility of SN ejecta

Look for observable consequence

Athanassiadou & BDF 11; Fry & BDF in prep

What if
$$d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$$
?

gas-phase SN debris excluded from Earth

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains SN1987A:

→ ~100% (!) of Fe in dust after 20 years

SN1987A dust: Matsuura+ 2011

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains SN1987A:

➤ ~100% (!) of Fe in dust after 20 years

SN dust penetrates to 1 AU even if gas does not

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields

D MIPS 24 micron

Spitzer Space Telescope

SN1987A dust: Matsuura+ 2011

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \text{ pc} > r_{\rm shock} > 1 \text{ AU?}$

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains SN1987A:

→ ~100% (!) of Fe in dust after 20 years

SN dust penetrates to 1 AU even if gas does not

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains SN1987A:

→ ~100% (!) of Fe in dust after 20 years

SN dust penetrates to 1 AU even if gas does not

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields
- for $v_{\rm dust} > 100~{\rm km~s^{-1}} \gg v_{\rm esc}$ nearly ballistic trajectory

Athanassiadou & BDF 11; Fry & BDF in prep

What if $d_{\rm SN} > 10 \ {\rm pc} r_{\rm shock} > 1 \ {\rm AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains SN1987A:

→ ~100% (!) of Fe in dust after 20 years

SN dust penetrates to 1 AU even if gas does not

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields
- for $v_{\rm dust} > 100~{\rm km~s^{-1}} \gg v_{\rm esc}$ nearly ballistic trajectory
- radioisotope delivery efficiency set by dust survival fraction

Knie et al. (1999) ferromanganese (FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

Knie et al. (1999) ferromanganese (FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

AMS \rightarrow live ⁶⁰Fe, $\tau = 2.2 \,\text{Myr}!$

Knie et al. (1999) ferromanganese (FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

Expect: one radioactive layer

Knie et al. (1999) ferromanganese (FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

Expect: one radioactive layer

1999: ⁶⁰Fe in multiple layers!?

Knie et al. (1999) ferromanganese (FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

AMS \rightarrow live ⁶⁰Fe, $\tau = 2.2 \,\text{Myr}!$

Expect: one radioactive layer

1999: ⁶⁰Fe in multiple layers!?

- detectable signal exists
- but not time-resolved

Advances

- √ Better geometry (planar)
- **√** better time resolution
- √10Be radioactive timescale

Advances

- √ Better geometry (planar)
- **√** better time resolution
- √10Be radioactive timescale

Advances

- √ Better geometry (planar)
- **√** better time resolution
- √10Be radioactive timescale

Advances

- √ Better geometry (planar)
- **√** better time resolution
- √10Be radioactive timescale

Advances

- √ Better geometry (planar)
- **√** better time resolution
- √10Be ______radioactive timescale

Advances

New crust from new site

- √ Better geometry (planar)
- **√** better time resolution
- √10Be ______radioactive timescale

Isolated Signal

$$t = 2.8 \pm 0.4 \text{ Myr}$$

A Landmark Result

- Isolated pulse identified
- ★ Epoch quantified
- ★ Consistent with original crust

Advances

New crust from new site

- √ Better geometry (planar)
- √ better time resolution
- √10Be radioactive timescale

Isolated Signal

$$t = 2.8 \pm 0.4 \text{ Myr}$$

A Landmark Result

- Isolated pulse identified
- ★ Epoch quantified
- ★ Consistent with original crust

Turn the problem around:

$$N_{60, {
m obs}} \sim M_{
m ej, 60} e^{-t/ au} / d^2$$
 $d \sim \sqrt{\frac{N_{
m obs}}{M_{60}(M_{
m SN})}}$

In principle:

Multiple isotopes N mass

In practice:

- ⁶⁰Fe mass dependence non-monotonic, m dependent
- **Need other isotopes**

For now

$$d({\rm SN}) \sim 20 - 100 \; {\rm pc}$$

Turn the problem around:

$$N_{60, {
m obs}} \sim M_{
m ej, 60} e^{-t/ au} / d^2$$
 $d \sim \sqrt{\frac{N_{
m obs}}{M_{60}(M_{
m SN})}}$

In principle:

Multiple isotopes N mass

In practice:

- ⁶⁰Fe mass dependence non-monotonic, m dependent
- **Need other isotopes**

For now

$$d(SN) \sim 20 - 100 \text{ pc}$$

Encouraging:

Turn the problem around:

$$N_{60, {
m obs}} \sim M_{
m ej, 60} e^{-t/ au} / d^2$$
 $d \sim \sqrt{\frac{N_{
m obs}}{M_{60}(M_{
m SN})}}$

In principle:

Multiple isotopes N mass

In practice:

- ⁶⁰Fe mass dependence non-monotonic, m dependent
- **Need other isotopes**

For now

$$d(SN) \sim 20 - 100 \text{ pc}$$

Encouraging:

*astronomical distances not built in!

Turn the problem around:

$$N_{
m 60,obs} \sim M_{
m ej,60} e^{-t/ au} / d^2$$
 $d \sim \sqrt{\frac{N_{
m obs}}{M_{
m 60}(M_{
m SN})}}$

In principle:

Multiple isotopes N mass

In practice:

- ⁶⁰Fe mass dependence non-monotonic, m dependent
- **Need other isotopes**

For now

$$d(SN) \sim 20 - 100 \text{ pc}$$

Encouraging:

- **astronomical distances not built in!
- ★ $d(^{60}\text{Fe}) \approx d(\text{SN} \rightarrow \text{Earth}) \approx d_{\text{SN}}(3 \text{ Myr})$

pntrivial consistency!

Radioactive Fossil Bacteria S. Bishop APS talk

Radioactive Fossil Bacteria S. Bishop APS talk

- -magnetotactic bacteria synthesize magentite nanoparticles (Fe₃O₄)
- -incorporate & concentrate ocean Fe

Radioactive Fossil Bacteria S. Bishop APS talk

- -magnetotactic bacteria synthesize magentite nanoparticles (Fe₃O₄)
- -incorporate & concentrate ocean Fe
- -60 Fe spike seen ocean sediment!
- -coincident in time with crust data!

Radioactive Fossil Bacteria S. Bishop APS talk

- -magnetotactic bacteria synthesize magentite nanoparticles (Fe₃O₄)
- -incorporate & concentrate ocean Fe
- -60 Fe spike seen ocean sediment!
- -coincident in time with crust data!

Lunar Soil

- consistency check for deep-ocean signal
- but: nontrivial background: cosmic-ray activation of lunar regolith

Radioactive Fossil Bacteria S. Bishop APS talk

- -magnetotactic bacteria synthesize magentite nanoparticles (Fe₃O₄)
- -incorporate & concentrate ocean Fe
- -60 Fe spike seen ocean sediment!
- -coincident in time with crust data!

Lunar Soil

- consistency check for deep-ocean signal
- but: nontrivial background: cosmic-ray activation of lunar regolith

Cook et al 2010 2-page conference proceeding!

★ ⁶⁰Fe excess in top layer of lunar drill core

Alan Bean, Apollo 12 (1969)

Radioactive Fossil Bacteria S. Bishop APS talk

- -magnetotactic bacteria synthesize magentite nanoparticles (Fe₃O₄)
- -incorporate & concentrate ocean Fe
- -60 Fe spike seen ocean sediment!
- -coincident in time with crust data!

Lunar Soil

- consistency check for deep-ocean signal
- but: nontrivial background: cosmic-ray activation of lunar regolith

Cook et al 2010 2-page conference proceeding!

- ★ ⁶⁰Fe excess in top layer of lunar drill core
- ★ signal amplitude (surface density) smaller than deep-ocean sample

Alan Bean, Apollo 12 (1969)

Aftermath: The Local Bubble?

★The Sun lives in region of hot, rarefied gas

Aftermath: The Local Bubble?

- **★The Sun lives in region of** hot, rarefied gas
 - The Local Bubble
 - hot cavity ~50 pcbuge

 seen via foreground absorption in nearby starlight

Aftermath: The Local Bubble?

★The Sun lives in region of hot, rarefied gas

- The Local Bubble
- hot cavity ~50 pcbuge

- seen via foreground absorption in nearby starlight
- ★Nearby SN needed
 - we live inside SN remains
 - bubble models require >> 1 SN in past 10 Myr Smith & Cox 01
 - ⁶⁰Fe event from nearest massive star cluster? Benitez et al 00

A Near Miss?

 $d > d_{kill} \sim 10$ pc...but barely:

- ¿ cosmic ray winter?
- ¿ bump in extinctions?

If true:

implications for astrobiology tightens Galactic habitable zone

Image: Mark Garlick www.markgarlick.com

Outlook

Summary and Conclusions

- ★ Live ⁶⁰Fe seen in several deep-ocean crusts
- ★ Signal isolated to ~2-3 Myr ago
- **★** Source of Local Bubble?

Summary and Conclusions

- **★** Live ⁶⁰Fe seen in several deep-ocean crusts
- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology"

Implications across disciplines:
nucleosynthesis, stellar evolution, bio evolution, astrobiology
Nuclear & particle physics central

Outlook

Summary and Conclusions

- **★** Live ⁶⁰Fe seen in several deep-ocean crusts
- ★ Signal isolated to ~2-3 Myr ago
- Source of Local Bubble?

Birth of "Supernova Archaeology"

Implications across disciplines:
nucleosynthesis, stellar evolution, bio evolution, astrobiology
Nuclear & particle physics central

Future Research

- better model of SN penetration of heliosphere
- improved SN nucleosynthesis
- more, different samples:
 - **√** other isotopes
 - √ other media (fossil bacteria)
 - √ other sites (lunar cores?)
- other epochs? Mass extinction correlations?
- stay tuned...