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Core-Collapse Supernovae
Symphonies of  the Fundamental Forces

Lives of  Massive Stars (> 8-10 Msun)

★ Begin burning 
★ Then, at accelerating pace

‣ repeated cycles of  ash       fuel
‣ ever-heavier elements in core

★  “onion skin” structure

When core 56Fe:  max binding
★ core fusion stops:  support by degen e- 
★ When                      
 unstable      gravitational collapse
★ Core “bounce” at nuke density
★ “Neutrino bomb” ignited:  ~ few 1053 erg
  Koshiba & Kamiokande

➡ Shock launched:  ~1051 erg

Explosion!

H→ He
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The Great Survey Era
★ key advance:

large field of view & large collecting area

★ each exposure gives deep image of 
large chunk of sky

★ will feasibly make 
deep scans 

huge sky coverage--up to entire visible sky 
repeated exposures:  movies

★ Optical Campaigns   Lunnan talk

prototype:  SDSS
recent/ongoing:  PTF, Pan-STARRS, DES
full-scale:  LSST

★ Key science driver:  Type Ia 
cosmology
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★ key advance:

large field of view & large collecting area

★ each exposure gives deep image of 
large chunk of sky

★ will feasibly make 
deep scans 

huge sky coverage--up to entire visible sky 
repeated exposures:  movies

★ Optical Campaigns   Lunnan talk

prototype:  SDSS
recent/ongoing:  PTF, Pan-STARRS, DES
full-scale:  LSST

★ Key science driver:  Type Ia 
cosmology

★ Radio:  Square Kilometer Array 
(SKA)

570 Megapixel camera 
2.2 deg2 field (DES)

LSST
1st	  Ground-‐Based	  Survey

Starting	  ~2020!
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Supernovae from
Optical Sky Surveys
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The Transient Sky Unveiled
Opening the Time Domain

Photometric transient detection via image subtraction

Movie Stars

★ Supernovae:  all types!

★ also:  gamma-ray burst afterglows, active galaxy flaring, 
variable stars, killer asteroids, ...

SN Legacy Survey 
~4 month scan

Epoch  -  Reference   = Difference



Central Input:
Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

★ massive star death “instantaneous”

star formation timescales << pre-SN lifetime

★ star formation rate via light from massive stars 
direct:  UV

reprocessed:  gas          lines;   dust         IR

trend:  factor ~10 rise to z=1, then ???
Hopkins & Beacom 2006

RSN ∝ ρ̇!
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Central Input:
Cosmic Supernova Rate

to date: inferred from cosmic star formation rate

★ massive star death “instantaneous”

star formation timescales << pre-SN lifetime

★ star formation rate via light from massive stars 
direct:  UV

reprocessed:  gas          lines;   dust         IR

trend:  factor ~10 rise to z=1, then ???

★ cosmic supernova rate:  
all-sky, all redshift:  ~ 10 events/sec

★ key uncertainty:  (optically) invisible SN

failed explosions:   direct collapse to black hole? 

dust obscuration of star-forming regions

RSN ∝ ρ̇!
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The Future:
Core-Collapse Cornucopia

Lien & BDF

★ Unbiased, untargeted supernova search

★ LSST:  

~300,000 core-collapse events each year!

conservatively > 1,000,000 CC events in survey 
lifetime

★ Cosmic Supernova Rate by direct counting
rate measured to 10% out to z~1

tradeoff:  redshift range (scan depth) vs SN counts (sky coverage)

looming uncertainty:  dust obscuration

★ Deep Drilling mode complementary

deep exposures on 40 deg2

CC detections to z~1.5

★ Core-collapse come for free!
survey characteristics tuned to SN Ia 

automatically well-suited for SN II

LSST Annual Core-Collapse Harvest

redshift z
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What can we do with 106  CC supernovae?
Demographics & Classification

★ volume limited to 200 Mpc 
(z=0.05):

complete, unbiased sample of supernova 
types

~all host galaxies visible!

progenitor stars can be seen in nearest 
events

★ high statistics out to z~0.5
dependence on galactic and cosmic 
environment 

rare events become commonplace (fizzle?  
AIC?)

★ deep drilling events to z~1.5 

set by bright tail of luminosity function:  
how high does it go?



Survey Supernovae:
Neutrino Impact
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★ Synoptic surveys directly 
observe large fraction of nu-
producing SNe out to z~1

★ Most of DSNB signal is from 
z<1

★ Surveys remove astrophysical 
rate uncertainty

★ Resulting DSNB flux is hard 
lower limit

omits dust-obscured or failed SN

★ energy dependence 
separates low/high redshift 
sources

Synoptic Surveys and the DSNB
Lien, BDF, and Beacom 2010
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Outlook
★ Great Survey Era is dawning!

time-domain astronomy revolutionized

★ Synoptic surveys          supernova bonanza
core collapse come for free!   all-sky, uniform datasets

volume limited CC sample to ~ 200 Mpc

large statistics to z~0.5

deep drilling to z~1.5

★ Unprecedented CC SN sample

> 1,000,000 CC events seen:  statistics for classification, evolution, environment

host galaxies seen to z~0.2, then orphans emerge

rare events become commonplace

★ Application Example:  SN Nu Background
survey supernova rate removes astrophysical uncertainty

excess neutrinos probe “invisible” supernovae; up to 50% allowed today!

★ A great time to work on supernovae!

observers:  now is the time to plan followup!

theorists:  now is the time to lay your bets!
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When Stars Attack! 
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Ø   main products:  
üalpha nuclei: 12C, 16O, …, 40Ca

üFe peak

Ømedium-lived radioactivities: 60Fe, 
26Al, 53Mn, 146Sm(?)

Ø 60Fe:  made by neutron captures
“weak s-process”

large theoretical uncertainties in yield

sensitive to stellar evolution, nuke rates

accuracy ~order of  magnitude

Ø r-process?  182Hf, 244Pu

56Fe(n,γ)57Fe(n,γ)58Fe(n,γ)59Fe(n,γ)60Fe

SN mass

Core-Collapse 60Fe:  Theoretical Yields
Tur+ 2010; Limongi & Chieffi 2006
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Nachbarsternsupernovaexplosionsgefahr
or

Attack of  the Death Star!
Ill efects if  a supernova too close

possible source of  mass extinction
• Shklovskii; Russell & Tucker 71; Ruderman 74; Melott talk

Ionizing radiation

• initial gamma, X, UV rays

 subsequent diffusive cosmic rays

•  destroy ozone in atmosphere

 Ruderman 74; Ellis & Schramm 94

• solar UV kills bottom of  food chain

 Crutzen & Bruhl 96; Gehrels etal 03;

 Melott & Thomas groups; Smith, Sclao, & Wheeler 04 

Neutrinos

•  neutrino-nucleon elastic scattering: 

 “linear energy transfer” 

  DNA damage

 Collar 96, but see Karam 02

Minimum safe distance:  ~8 pc
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The Smoking Gun:
Supernova Debris on the Earth

Ellis, BDF, & Schramm 1996 
Explosion launched at ~few% c

Slows as plows thru interstellar matter

Earth “shielded” by solar wind

If  blast close enough:

✓ overwhelms solar wind

✓ SN material dumped on Earth

✓ Accumulates in natural “archives”
 sea sediments, ice cores

Q:  How would we know?  
Need observable SN “fingerprint”  

Nuclear Signature

X Stable nuclides:  don’t know came from SN
ü Live radioactive isotopes:  none left on Earth

If  found, must come from SN!

SOHO

Chandra
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The Fury of  Aerial Bombardment:
Supernova Blast Passage--Global View

BDF, Athanassiadou, Johnson 2008

Supernova Remnant 
Evolution

Ø Simulation: 
 FLASH Fryxell et al 2000

 Adaptive Mesh 
Refinement

Ø  geometry: cyindrical
Ø  
Ø

Dense Shell
~kyr transit time

10 pc
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Supernova Blast Impact
on the Solar System  

BDF, Athanassiadou, & Johnson 2006
Simulation:

FLASH Fryxell et al 2000

Blast Properties:

 SN at 10 pc

Geometry:

Cylindrical

Incoming blast

Sun

1 AU = 
Earth’s orbit



BDF, Athanassiadou, & Johnson 2008
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Now in 3-D!

It’s a squid!
Athanassiadou et al in prep
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Assault on the Heliosphere:  
Lessons

Hydrodynamic collision:
üSupernovae < few 10 pc  
 penetrate inside ~few AU
üWhy?    Happy(?) accident

➡Ram pressures 

Since                   careful simulation warranted
‣ ions vs neutrals, dust, 3-D, B fields…

‣ “vanilla” model is worst case:  
most effects “beneficial” for matter deposition

For today:
‣Take seriously possibility of  SN ejecta          Earth
‣Look for observable consequence

ρv
2(SN, 10pc) = ρv

2(SW, 1AU) = 2 nPa
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Debris Delivery via Dust 

Athanassiadou & BDF 11;  Fry & BDF in prep

What if                                                     ?
‣ gas-phase SN debris excluded from Earth

But  SN radioisotopes all are 
refractory elements          dust grains
SN1987A:  
‣ ~100% (!) of  Fe in dust after 20 years

SN dust penetrates to 1 AU even if  gas 
does not
‣ dust decouples from gas at shocks
‣ grains incident on heliosphere feel gravity, 

radiation pressure, magnetic fields 
‣ for                                                                         nearly 

ballistic trajectory
‣ radioisotope delivery efficiency set by dust 

survival fraction    

dSN > 10 pc rshock > 1 AU

vdust > 100 km s
−1

! vesc
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Deep Ocean Crust
Knie et al. (1999)       ferromanganese 

(FeMn) crust

Pacific Ocean

growth: ~ 1 mm/Myr

AMS            live 60Fe,                   !

Expect:  one radioactive layer

1999:  60Fe in multiple layers!?

‣detectable signal exists

‣but not time-resolved
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60Fe Confirmation
Knie et al (2004)

Advances     

New crust from new site

✓Better geometry (planar)

✓better time resolution

✓10Be         radioactive timescale

Isolated Signal

A Landmark Result

★ Isolated pulse identified

★ Epoch quantified
★ Consistent with original crust

Woo hoo!

Background:  60Ni

Note fantastic AMS 
sensitivity!

t = 2.8±0.4 Myr
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Implications:  SN Distance
Turn the problem around:

In principle:

• Multiple isotopes         SN mass

In practice:

• 60Fe mass dependence non-monotonic, model-
dependent

• Need other isotopes

For now

Encouraging:

★astronomical distances not built in!

★                                   

nontrivial consistency!

d(60Fe)≈ d(SN→ Earth)≈ dSN(3 Myr)

d(SN) ∼ 20 − 100 pc

“Radioactivity Distance” to Supernova
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Other Signals?
Radioactive Fossil Bacteria  S. Bishop APS talk

-magnetotactic bacteria synthesize 
magentite nanoparticles (Fe3O4)

-incorporate & concentrate ocean Fe

-60Fe spike seen ocean sediment!

-coincident in time with crust data!

Lunar Soil

★ consistency check for deep-ocean signal
★but: nontrivial background: cosmic-ray 

activation of  lunar regolith

Cook et al 2010 2-page conference proceeding!

★ 60Fe excess in top layer of  lunar drill core
★ signal amplitude (surface density) smaller 

than deep-ocean sample
42

Alan Bean, Apollo 12 (1969)
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Aftermath:  The Local Bubble?
★The Sun lives in region of  

hot, rarefied gas
– The Local Bubble
– hot cavity ~50 pc           huge

– seen via foreground absorption 
in nearby starlight

★Nearby SN needed
– we live inside SN remains
– bubble models require >> 1 SN 

in past 10 Myr  Smith & Cox 01

– 60Fe event from nearest massive 
star cluster?  Benitez et al 00



A Near Miss?

                           ...but barely: "near 
miss" 
¿ cosmic ray winter? 
¿ bump in extinctions?

If  true:  
implications for astrobiology
tightens Galactic habitable zone

Image:  Mark Garlick 
www.markgarlick.com

http://www.markgarlick.com
http://www.markgarlick.com
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★ Signal isolated to ~2-3 Myr ago
★ Source of  Local Bubble?

Birth of  “Supernova Archaeology" 
Implications across disciplines:
   nucleosynthesis, stellar evolution, bio evolution, astrobiology

Nuclear & particle physics central

Future Research

‣ better model of  SN penetration of  heliosphere
‣ improved SN nucleosynthesis
‣ more, different samples:

✓ other isotopes
✓ other media (fossil bacteria)
✓ other sites (lunar cores?)

‣ other epochs?   Mass extinction correlations?

‣ stay tuned...


