The r-process of nucleosynthesis: the influence of nuclear data on the abundance pattern

Gail McLaughlin

North Carolina State University

Recall from yesterday: whats happening here?

Recall from yesteday: what is happening here?

red: neutrons, blue: protons, purple: alphas

r-process

e. g. Uranium-238 Z=92, N=146 \rightarrow need lots of neutrons

 $A(Z,N) + n \leftrightarrow A + 1(Z,N+1) + \gamma$ $A(Z,N) \rightarrow A(Z+1,N-1) + e^{-} + \bar{\nu}_{e}$

rapid neutron capture as compared with beta decay

How to read r-process flow plots

Equilibrium and Actual Separation Energies

Effect of changing separation energies, capture rates

Suppose we increase photo-dissociation/capture rates Solid - change in the 130 peak rate of "eating" neutrons Dotted - change in the rest of the abundance patterns rate of "eating" neutrons

How does the rare earth peak form?

Solar abundance data with the rare earth peak in red

The rare earth peak: how did it form?

Fission cycling or neutron capture?

In most models it forms by a "pile-up" of nuclei in the slow drift back to stability, i.e. through neutron capture.

How to read r-process flow plots

How to form structures

ETFSI decay to stability

Calculation with the ETFSI model

FRDM decay to stability

Calculation with the FRDM model

FRDM decay to stability

Calculation with the FRDM model

HFB-17 decay to stability

Calculation with the FRDM model