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Fluid Dynamics
Fluid Dynamics, subsuming both hydrodynamics and 
aerodynamics, is a continuum description of the collective 
behavior of a large number of particles.

The equations of fluid dynamics can be derived from kinetic 
theory in the limit that the collisional mean free path, 𝓁, is 
much smaller than the macroscopic scales of interest, L.

Thus we are concerned with the bulk velocity of the fluid, u, 
while the random velocity of individual fluid particles is only 
considered to the extent that they form an internal energy.

Key to the behavior of fluids is that they, like solids, deform 
under stress.  However, unlike a solid, a fluid shows no 
tendency to return to the former state when the stress is 
removed.



Quantity of matter can be described by the mass density,
which changes in time and space.

The change of ρ with time in the 
box requires a “flux” of mass 
across the boundary at velocity u.

More formally,

Applying the time independence of V on the left and 
divergence theorem on the right yields

Since this is true for arbitrary V,

Continuity

ρ (x,t) ρuρu

Continuity 
Equation



Defining Derivatives
When considering a moving fluid, there are two natural 
frames of reference.

1) Eulerian Coordinates, which are fixed in space.

2) Lagrangian Coordinates, which move with the fluid.

To define a Lagrangian (or material) Derivative of a quantity 
f, we must consider both changes that are local in space and 
those that result from movement.

Since ∇⋅(ba⃗) = a⃗⋅∇b + b(∇⋅a)⃗, the continuity equation can be 
transformed from 

into



Causing Fluid to Move
We next need to understand what generates the velocity, u.

For a co-moving volume, the total momentum is ∫V ρu dV and 
the time rate of change comes entirely from external forces.

These take the form of external body forces, f, e.g., gravity, 
and surface forces, e.g., pressure, P.

Applying the Chain Rule to the left side yields,

Applying the divergence theorem to the right side yields

0
since ρV is 
invariant for 
co-moving 
volumes.  



Euler Equation
Combining these yields

or, since this applies for arbitrary volumes, 

Written in terms of coordinates fixed in space, this becomes

To make sure we see the physics of this equation, we can 
rewrite this as

Euler 
Equation



Viscosity
When we wrote the effect of the surface pressure as ∫S P n⃗ dS, 
we implicitly assumed that viscosity was unimportant.

In the general case, Fi = ∫S Σj P σij nj dS, where σij is the stress 
tensor, rather than ∫S P ni dS.

For gases and simple liquids, we can define a dynamical 
viscosity, μ, in which case the stress tensor is 

In this case, the momentum equation becomes

μ is generally very small in astrophysics and the Reynolds 
number, the ratio of inertial forces to viscous forces, is large. 

Navier-Stokes 
Equation.



Mechanical Energy
The Euler equation includes a gradient of the kinetic energy, 
requiring an equation to evolve the kinetic energy.

Taking the dot product of u/ρ with the Euler equation  

provides such an equation

Simply, the kinetic energy changes in response to work done 
by pressure and body forces. 

This approach may seem arbitrary, but is equivalent to 
calculating the work done by a force as 

mechanical 
energy equation



Energy Conservation
Of course, kinetic energy is not conserved, rather it is the total 
energy, kinetic + internal (thermal), ½u2 + U.

If we expand our energy equation to include the internal 
energy, we must add terms for the heat generated within the 
volume, 𝜖, and the flux of heat across the boundary, F.

Applying the divergence theorem to replace the surface 
integrals



Energy Equation
As in the prior derivation, the invariance of ρV for co-moving 
volumes simplifies the energy time derivative.  

Once again, we can also remove the volume integral that 
appears in each term, yielding.

Expanding the co-moving derivatives, and merging like 
terms, leaves



Equation of State
The pressure, P, appears in both the momentum and energy 
equation, yet we have no equation for its evolution.

For all matter, there exist thermodynamic relations linking the 
pressure, density, temperature, internal energy, entropy… 

These are the Equations of State (EoS).

The most widely known is the ideal (monatomic) gas EoS

P V = R T  and U = ³⁄₂ R T,  thus P = ⅔ ρ U

The more generalized version is cast in terms of the adiabatic 
index γ = CP/CV, the ratio of specific heats.

P = (γ−1) ρ U 

where γ = 5/3 for a monatomic gas.



Polytropic Fluid
For the adiabatic case, the ideal gas EoS can be written as

in which case 

Such EoS are often written in the form 

where n is called the polytropic index.

These polytopic EoS played a large role in early calculations 
of stellar structure and remain useful because a number of 
physical states behave approximately as polytropes.

For example, both the ideal monatomic gas and a non-
relativistic degenerate gas obey P = Κρ⁵⁄₃.

For a relativistic degenerate gas P = Κρ⁴⁄₃, and stars in 
radiative equilibrium also follow this relation.



Simplest application of hydrodynamic is hydrostatics (u = 0).  
The hydrostatic limit of the Euler equation is Hydrostatic 
Equilibrium.

Numerically this takes 
the form

Physically, this says the 
inward gravitational 
force must be balanced 
by the outward pressure.

This relationship is key to calculating the conditions in a 
star’s interior.

Hydrostatic Equilibrium



Standard Solar Model
Hydrostatic versions of the continuity 
and energy equation give us 

Together with an equation for 
Energy Transport, which  depends 
on the dominant energy transport 
process, these combined with 
boundary conditions like

M(0) = 0, L(0) = 0, & 
M(R☉) = M☉, L(R☉) = L☉,  etc. 
allow us to calculated the stellar models.

Energy GenerationMass Continuity



The Equations We Solve
In VH-1, and many similar hydrodynamics codes, the 3D 
problem is directionally-split into separate 1D solutions along 
the representative directions.  This simplifies the equations.

To allow for different coordinate systems, 
we work in terms of a volume coordinate 
V with cell cross section A

Gradients use a generalized 
spatial coordinate, χ

Momentum is also 
advected transversely.

Total energy E = 
½(𝑢2+𝑣2+𝑤2) + U 
Equation of State



Spatial Differencing
Transforming continuous variables, f(x), to variables 
represented on a discrete grid, fj, we must approximate spatial 
derivates as differences.  However, the choice is not unique.

For example, ∂f/∂x at x = xj can be written as

forward difference

backward difference

centered difference

Higher order derivatives touch more points on the grid, e.g.,



Order of Error
Difference choices of derivatives affect the error the comes 
from mapping to a discrete grid.  One can estimate this error 
by calculating fj+1 = f(xj+1) = f(xj+Δx) and fj−1 = f(xj−1) = 
f(xj−Δx) using the Taylor series

to calculate the error as a function of Δx.
For both forward and backward differencing the leading error 
in the approximation of ∂f/∂x is ∝ (Δx) ∂2f/∂x2, thus these 
approximations are O(Δx). For centered differencing, the 
error is  O(Δx2) because the ∂2f/∂x2 terms cancel.  

While having a smaller truncation error, centered differencing 
has a tendency to spread sharp features which is determental 
in some circumstances.



Capturing Shocks
Many problems in nuclear 
astrophysics include shocks 
and compositional (contact) 
discontinuities.

Simple differencing schemes 
are challenged by sharp flow 
features like these.

Low order methods tend to 
diffuse these features over 
many zones. 

Higher order methods are less 
diffusive, but can add 
considerable dispersion (noise).

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Solving the Euler Equations

❑ Low-order simple methods 

of solving the Euler 

equations result in 

substantial numerical 

diffusion of flow features. 

❑ Higher-order simple 

methods can result in 

numerical dispersion of 

flow features
❑ Particularly a problem 

around sharp features 
❑ But hydro equations allow 

discontinuities (shocks, 
contacts)

LeVeque, http://www.amath.washington.edu/~claw/

1st order upwind

2nd order Lax-Wendroff

LeVeque



An alternative, from Godunov, is to 
calculate fluxes by assuming a 
Riemann problem at each interface.

For left wave,   P*− Pl + Wl(u*−ul) = 0

For right wave, P*− Pr − Wr(u*−ur) = 0

where (Pr, ur) & (Pl, ul) characterize 
the unshocked right and left states, 
(P*, u*) are the unknown shocked 
state and 

(P*, u*) can be calculated (iteratively) from the right and left 
wave equations and from these fluxes at the interfaces.
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3.1.6. Solution to RiemannÏs Problem for Gamma-L aw Gases
The next step is to solve RiemannÏs problem at each zone interface using these e†ective left and right states. The general

solution consists of one wave (shock or rarefaction) moving to the left, a second wave traveling to the right, and a contact
discontinuity in between. A typical example of RiemannÏs problem is shown in Figure 16. We make one approximation in
constructing the solution, namely, that the two waves propagating to the left and right are both shocks. This approximation,
which is accurate to third order in the size of the entropy jump across the wave, will produce a small error at rarefactions.
However, rarefactions quickly spread over many zones, so the entropy jump from one zone to the next is usually quite small.
This approach leads to a much more efficient solution, since it avoids the need for logic to determine which formulae to use for
a given wave and also avoids the use of the rarefaction formulae, which contain fractional powers and are therefore expensive
to compute.

We begin by describing the solution to RiemannÏs problem for the simple case of a gamma-law gas. In the following section
we include a description of a method that can be used to treat a general EOS. The following shock jump equations can be
derived from the integral form of the gas dynamics equations. For a shock moving to the left,
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The values of P* and u* must be identical for both waves. Any di†erence in the two values would lead to additional waves
being generated. Therefore, equations (68) and (69) represent two nonlinear equations with two unknowns (P* and u*), which
can be solved by standard numerical techniques.

FIG. 16.ÈSample Riemann problem starting from shock tube data. Top: Initial discontinuity at t \ 0 located at Bottom: Self-similar evolution of them
i
.

discontinuity for t [ 0, showing the locations of the head of the rarefaction the foot of the rarefaction the contact discontinuity and the shockmhd, mft, mcd, msh .

Riemann Problem
Shock

Contact 
D

iscontinuity

Rarefaction
t = 0

t > 0



PPM
The Piecewise Parabolic Method, 
introduced by Colella & 
Woodward, improves on 
Godunov’s method by using a 
piecewise parabolic 
reconstruction of flow variables 
(akin to Simpson’s rule for 
integration) in place of piecewise 
constant.

It adds explicit steeping of contact 
discontinuities and flattening of 
overly narrow shocks.

FLASH and VH-1 are both 
implementation of PPM.

FIG. 6.ÈSchematic density proÐle showing the steepening process at a contact discontinuity. The solid line shows the original piecewise parabolic
distribution of the density before steepening. The dot-dashed line in zone i shows the new density proÐle after application of the steepening procedure.

FIG. 7.ÈSimple contact discontinuity, from a FLASH simulation, with the steepening criteria enabled. Note that there are only two zones deÐning the
discontinuity. At this time, the discontinuity has propagated across 320 zones.

FIG. 6.ÈSchematic density proÐle showing the steepening process at a contact discontinuity. The solid line shows the original piecewise parabolic
distribution of the density before steepening. The dot-dashed line in zone i shows the new density proÐle after application of the steepening procedure.

FIG. 7.ÈSimple contact discontinuity, from a FLASH simulation, with the steepening criteria enabled. Note that there are only two zones deÐning the
discontinuity. At this time, the discontinuity has propagated across 320 zones.

Fryxell et al (2000)



Heat Transport
To quantify how the tremendous heat of stellar interior is 
transferred to the surface, we need an equation for energy 
transport, dT/dr = ?

The form of the equation depends on the means by which the 
energy moves.

In general, there are three modes of heat transfer

Conduction: The transfer of energy through motions on the 
microscopic scale (atoms or molecules).

Convection: The transfer of energy through macroscopic fluid 
motions.

Radiation: The transfer of energy via electromagnetic 
radiation (other forms of radiation are possible).



Radiation Force
Blackbody radiation exerts a pressure equal to ⅓ of the 
radiation density.

The decline in temperature from the center of the star toward 
the surface causes a spherical shell in the star, thickness dr, to 
experience a temperature gradient, dT.

Outer Surface:Inner Surface:

This produces a net force,

where



Radiation Momentum
An alternative way to approach the same problem is in terms 
of the momentum of photons that are absorbed.

The momentum of a photon is p = E/c.

The total rate of photon energy passing through the shell is 
L(r), thus the total photon momentum is L(r)/c.

The fraction of the photons absorbed passing through a shell 
of thickness dr is 

dI/I = − n(r) σ(r) dr

The rate at which momentum is transferred to the matter by 
absorbed photons is a force,

= dτ = − ρ(r) κ(r) dr if dτ ≪ 1



Radiative Heat Transport
With 2 equations for Frad, one in terms of a temperature 
change and the other in terms of a distance and opacity, a 
temperature gradient can be constructed. 

The resulting gradient, 

is called the equation of radiative energy transport.

In the Sun, a typical value of this gradient is 

Earth’s Troposphere ≈ − 7 K km−1



Convective Transport
Convective energy transport is a turbulent process by which 
hotter, deeper parcels of fluid rise, forcing cooler fluid to sink, 
and carrying energy upward.

If you watch a pot of water on the 
stove, convection does not begin 
the moment the heat is applied to 
the bottom.

Instead, a temperature gradient 
between the heating element and 
the surface must build.  

Convection begins only when it reaches a critical value.  

This critical gradient is called the adiabatic temperature 
gradient.



Convective Stability
Consider a small blob of fluid, in a star or a cooking pot. 

It has pressure Pb and density ρb, compared to the ambient 
pressure P and density ρ.

If the blob is perturbed upward, to a lower pressure region, 
P + dP (dP<0), it will expand until Pb + dPb = P + dP.

What happens next depends on the density.  If it is denser 
than the new surroundings (ρb+dρb > ρ +dρ), it will sink 
back down and the fluid is stable.  

However, if ρb + dρb < ρ + dρ, the blob is buoyant and will 
keep rising, marking the onset of convection.

Since initially ρb = ρ, the stability condition is dρb > dρ.



Adiabatic Expansion
If this blob moves upward rapidly, there is insufficient time 
for it to exchange heat with the ambient medium.

A process in which heat is neither gained or lost is called 
adiabatic.  Adiabatic processes are also isentropic.

For an adiabatic process PV γ is conserved.  
γ is the adiabatic index (e.g., γ = 5/3 for monatomic gas).

Writing this in terms of density Pρ−γ and taking the derivative

Applying the initial condition, ρb = ρ & Pb = P, and the 
requirement of hydrostatic equilibrium dPb = dP,



Stability Condition
Applying this expression for dρb to the stability condition

Simplifying yields

To compare the convective stability to the radiative energy 
transport requires conversion to dT/dr.  For an ideal gas,

Rearrangement reveals,

Thus the stability condition 
can be written,



Adiabatic Gradient
Grouping the dP/dr terms, and multiplying by T yields

The left-hand side of this equation is called the adiabatic 
temperature gradient.  At any point that the actual 
temperature gradient (the right-hand side) obeys this relation, 
convection is suppressed and radiative transport dominates.

Where this relation is not met, convection results, forcing the 
actual temperature gradient toward the adiabatic temperature 
gradient.  

The equation of convective 
energy transport is therefore



Convection is very important in stellar evolution. 

Its proper treatment is a topic of much research (& debate).

Stellar Convection

Meakin & Arnett (2006)
Arnett, Meakin 
& Viallet (2014)

http://scitation.aip.org/search?value1=W.+D.+Arnett&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=W.+D.+Arnett&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=C.+Meakin&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=C.+Meakin&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=M.+Viallet&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=M.+Viallet&option1=author&noRedirect=true


Rayleigh-Taylor
Another instability of interest to nuclear 
astrophysics is the Rayleigh-Taylor instability. 

When a denser fluid lies “over” a lighter 
fluid, the amplitude, η, of a perturbation of 
the interface of wavelength 2π/k will grow 
exponentially 

η(t)=η0 exp[(Agk)½ t]
where A is the Atwood number 

This ideal fluid solution is modified by 
viscosity and diffusivity, which inhibit high-
wavenumber (short wavelength) growth.

This also occurs when acceleration, as by a 
shock, takes the place of an effective gravity.
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3D RT

arxiv.org/abs/1210.2591

http://arxiv.org/abs/1210.2591
http://arxiv.org/abs/1210.2591


Thermonuclear RT
With ongoing energy production from nuclear reactions, the 
hot, low density matter remains lower in density as it rises.

This allows 
successive 
generations of 
Rayleigh-Taylor 
instability to build 
on each other.

Here we see a 
narrow region from 
a thermonuclear 
supernovae.



Kelvin-Helmholtz
Another commonly   
encountered hydrodynamic 
instability is the Kelvin-
Helmholtz instability.

It occurs when a velocity 
shear exists between two 
layers in a fluid.

The motion of the higher 
velocity fluid introduces 
vorticity at the interface.

The unstable interface can 
grow to include the entire 
volume.

www.astro.virginia.edu/VITA/ATHENA/kh.html
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Kelvin-Helmholtz in 3D
In 3D, KH starts as in 2D, but soon develops lateral motions.

www.lcse.umn.edu/index.php?c=movies

http://www.lcse.umn.edu/index.php?c=movies
http://www.lcse.umn.edu/index.php?c=movies


Standing Accretion Shock
Numerical simulations of a standing accretion 
shock, a phenomenon thought to occur during 
core-collapse supernovae, led to the discovery 
of a new instability by Blondin & Mezzacappa 
(2003).

Studied by many groups using simplified 
hydrodynamic models and seen by most 
groups doing realistic supernova models, in 
cases where the shock stalls for a sufficient 
time.  

However, the mechanism is still a subject of 
debate, with some arguing it is an acoustic 
instability and others arguing advective-
acoustic.



SASI in 2D
In 2D, the SASI 
is dominated by 
a sloshing mode 
dominated by 
the l  = 1 
component.

The net effect is 
to push the 
accretion shock 
boundary 
outward.



SASI in 3D
In 3D, the l = 1 sloshing mode transforms to an m = 1 
spiral mode.

Blondin & Mezzacappa (2007)



Shallow Water Supernova?
Recently, Foglizzo 
and collaborators 
discovered a similar 
instability in a 
shallow water 
system, SWASI, a 
Shallow Water 
Analogue of a 
Shock Instability.

These also show 
initial sloshing 
modes that 
sometimes transition 
to spiral modes.

Foglizzo, Masset, Guilet, & Durand (2012)



Conclusions
Equations of Hydrodynamics are conservation equations for 
mass, momentum and total energy, as modified by external 
surface and body forces, internal energy generation and 
surface energy flow.

The Equation of State closes the system of equations.

Godunov methods, including PPM, use the solution of 
Riemann problems to calculate fluxes across cell boundaries, 
allowing better capture of shocks and other sharp features.

Convection and a number of other instabilities (Rayleigh-
Taylor, Kelvin-Helmholtz, SASI) are important for nuclear 
astrophysics by altering the fluid flow in which nuclear 
reactions occur and the distribution of the newly formed 
elements.


