User Tools

Site Tools


culinary_services

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
culinary_services [2014/05/30 17:31]
parzuchowski created
culinary_services [2014/06/05 14:59]
warren
Line 1: Line 1:
-We are Culinary Services.  +We are Culinary Services. ​\\ 
-We cook helium ​and hydrogen+\\ 
 +Who ordered the extra side of <​sup>​44</​sup>​Ti?​ 
 +  
 + 
 +**GROUP MEMBERS**\\ 
 +Alex Long (parameters)\\  
 +MacKenzie Warren (code)\\ 
 +Nathan Parzuchowski (analysis)\\ 
 + 
 +==== TOPIC ==== 
 +Sensitivity studied of <​sup>​44</​sup>​Ti production in in core-collapse supernova environments. 
 + 
 +===Scientific Background=== 
 + 
 +There are many uncertainties in our understanding of core-collapse supernovae, including the explosion mechanism and nucleosynthesis. ​ One way to gain insight into these phenomena is to study the nucleosynthesis of radioactive isotopes in the shock-heated material. ​ These isotopes, such as <​sup>​44</​sup>​Ti and <​sup>​56</​sup>​Ni,​ determine the features of the supernova light curve. ​ Observations of supernova remnants can be used to put bounds on the production of these isotopes. 
 + 
 + {{ ::​cassa.png?​nolink&​200 | Observation of Cassiopeia A.  Green shows <​sup>​44</​sup>​Ti distribution,​ blue is <​sup>​28</​sup>​Si,​ and the red shows the Fe distribution. ​ (From Grefenstette et al 2014)}} 
 + 
 +Using simulations,​ we can use these observations to gain insight into the supernova environment. ​ By matching observed abundances, we can gain insight into the environment in which this nucleosynthesis must have taken place and in turn, the details of the explosion mechanism. ​ However, most core-collapse supernova simulations do not include sufficiently large reaction networks to simulate this nucleosynthesis. 
 + 
 +If the shock heating is sufficient, the material will be in Nuclear Statistical Equilibrium (NSE). ​ The isotopic abundances will be set by the thermodynamic environment (i.e. temperature and density). 
 + 
 +===Simulations=== 
 + 
 +We have chosen to do a parameter space study in peak temperature,​ density, ​and electron fraction, tarting with a set parameter space of peak temperatures [T<​sub>​9</​sub>​ = 4 - 7] and densities [$\rho$ = 10<​sup>​5</​sup>​ - 10<​sup>​7</​sup>​ g/​cm<​sup>​3</​sup>​]for three values of the electron fraction [Y<​sub>​e</​sub>​ = 0.45, 0.50, 0.55]. ​ This parameter space roughly corresponds with the shock heated region in simulations of Cassiopeia A-like supernovae (Young & Fryer 2007). 
 + 
 +We use analytic adiabatic freeze-out trajectories (Hoyle et al. 1964; Fowler & Hoyle 1964) which satisfy the differential equations:​ 
 + 
 +\begin{equation} 
 +\frac{dT}{dt} = \frac{-T}{3\tau} \hspace{1cm} \frac{d\rho}{dt} = -\frac{\rho}{\tau} 
 +\end{equation}  
 + 
 +Where $\tau$ is some static free-fall timescale. 
 +This **obviously** leads to: 
 + 
 +\begin{equation} 
 +T(t) = T_0 exp(-t/​3\tau) \hspace{1cm} \rho (t) = \rho_0 exp(-t/​\tau) 
 +\end{equation} 
 +where $T_0$ and $\rho_0$ are the peak temperature and density in the supernova.  
 + 
 +Then you run the code, and it doesn'​t work. (nevermind, it does work.) 
 + 
 +===Results=== 
 + 
 +**REFERENCES** \\ 
 +[[http://​iopscience.iop.org/​0067-0049/​191/​1/​66|Trends in 44Ti and 56Ni from Core-Collapse Supernovae (Magkotsios et al (2010))]]\\ 
 +[[http://​iopscience.iop.org/​0004-637X/​504/​1/​500|Nuclear Reactions Governing the Nucleosynthesis of 44Ti (The et al (1998))]]\\ 
 +[[http://​www.sciencedirect.com/​science/​article/​pii/​S1387647303002707|X-ray and gamma-ray observations of Cas A]]
culinary_services.txt · Last modified: 2014/06/06 15:52 by long