User Tools

Site Tools


culinary_services

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
culinary_services [2014/05/30 17:31]
parzuchowski created
culinary_services [2014/06/06 14:23]
long
Line 1: Line 1:
-We are Culinary Services.  +We are Culinary Services. ​\\ 
-We cook helium ​and hydrogen. ​+\\ 
 +Who ordered the extra side of <​sup>​44</​sup>​Ti?​ 
 +  
 + 
 +**GROUP MEMBERS**\\ 
 +Alex Long (parameters)\\  
 +MacKenzie Warren (code)\\ 
 +Nathan Parzuchowski (analysis)\\ 
 + 
 +==== TOPIC ==== 
 +Sensitivity studied of <​sup>​44</​sup>​Ti production in in core-collapse supernova environments. 
 + 
 +===Scientific Background=== 
 + 
 +There are many uncertainties in our understanding of core-collapse supernovae, including the explosion mechanism and nucleosynthesis. ​ One way to gain insight into these phenomena is to study the nucleosynthesis of radioactive isotopes in the shock-heated material. ​ These isotopes, such as <​sup>​44</​sup>​Ti and <​sup>​56</​sup>​Ni,​ determine the features of the supernova light curve. ​ Observations of supernova remnants can be used to put bounds on the production of these isotopes. 
 + 
 + {{ ::​cassa.png?​nolink&​200 |Observation of Cassiopeia A.  Green shows 44Ti distribution,​ blue is 28Si, and the red shows the Fe distribution. ​ (From Grefenstette et al 2014)}} 
 +Figure: Observation of Cassiopeia A.  Green shows <​sup>​44</​sup>​Ti distribution,​ blue is <​sup>​28</​sup>​Si,​ and the red shows the Fe distribution. ​ (From Grefenstette et al 2014) 
 + 
 +Using simulations,​ we can use these observations to gain insight into the supernova environment. ​ By matching observed abundances, we can gain insight into the environment in which this nucleosynthesis must have taken place and in turn, the details of the explosion mechanism. ​ However, most core-collapse supernova simulations do not include sufficiently large reaction networks to simulate this nucleosynthesis. 
 + 
 +If the shock heating is sufficient, the material will be in Nuclear Statistical Equilibrium (NSE). ​ The isotopic abundances will be set by the thermodynamic environment (i.e. temperature and density). 
 + 
 +===Simulations=== 
 + 
 +We have chosen to do a parameter space study in peak temperature,​ density, ​and electron fraction, tarting with a set parameter space of peak temperatures [T<​sub>​9</​sub>​ = 4 - 7] and densities [$\rho$ = 10<​sup>​5</​sup>​ - 10<​sup>​7</​sup>​ g/​cm<​sup>​3</​sup>​] for three values of the electron fraction [Y<​sub>​e</​sub>​ = 0.45, 0.50, 0.55]. ​ This parameter space roughly corresponds with the shock heated region in simulations of Cassiopeia A-like supernovae (Young & Fryer 2007). 
 + 
 +We use analytic adiabatic freeze-out trajectories (Hoyle et al. 1964; Fowler & Hoyle 1964) which satisfy the differential equations:​ 
 + 
 +\begin{equation} 
 +\frac{dT}{dt} = \frac{-T}{3\tau} \hspace{1cm} \frac{d\rho}{dt} = -\frac{\rho}{\tau} 
 +\end{equation}  
 + 
 +where $\tau$ is the hydrodynamic timescale. ​  
 +This leads to temperature and density trajectories:​ 
 + 
 +\begin{equation} 
 +T(t) = T_0 exp(-t/​3\tau) \hspace{1cm} \rho (t) = \rho_0 exp(-t/​\tau) 
 +\end{equation} 
 +where $T_0$ and $\rho_0$ are the peak temperature and density in the supernova.  
 + 
 +We used the [[https://​wikihost.nscl.msu.edu/​talent/​lib/​exe/​fetch.php?​media=xnet_public.zip|XNet]] reaction network code.  Our code included 447 isotopes ranging from hydrogen ​through germanium. ​ We took the reaction rates from the [[https://​groups.nscl.msu.edu/​jina/​reaclib/​db/​library.php?​action=viewsnapshots|JINA Reaclib database]]. ​ We set the threshold temperature for NSE to be 5 GK. 
 + 
 +Finally we looked at the mass fraction of several isotopes. In particular, $^{4}$He, $^{28}$Si, $^{44}$Ti, and $^{56}$Ni. We then compare our results to that of Magkotsios //et al// with in our parameter space.  
 + 
 +===Results=== 
 + 
 +==$^{44}$Ti Production== 
 +{{ :​44ti.png?​nolink&​900 }} 
 + 
 +==$^{56}$Ni Production== 
 +{{:​56ni.png?​nolink&​900|}} 
 + 
 +**REFERENCES** \\ 
 +[[http://​adsabs.harvard.edu/​abs/​2010ApJS..191...66M|Trends in 44Ti and 56Ni from Core-Collapse Supernovae (Magkotsios et al 2010)]]\\ 
 +[[http://​adsabs.harvard.edu/​abs/​1998ApJ...504..500T|Nuclear Reactions Governing the Nucleosynthesis of 44Ti (The et al 1998)]]\\ 
 +[[http://​adsabs.harvard.edu/​abs/​2004NewAR..48...61V|X-ray and gamma-ray studies of Cas A (Vink 2004)]]\\ 
 +[[http://​adsabs.harvard.edu/​abs/​2007ApJ...664.1033Y|Uncertainties in Supernova Yields I One-dimensional Explosions (Young & Fryer 2007)]]\\ 
 +[[http://​adsabs.harvard.edu/​abs/​2014Natur.506..339G|Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A (Grefenstette et al 2014)]]
culinary_services.txt · Last modified: 2014/06/06 15:52 by long